@article{NchiozemNgnitedemSperlichMatietaetal.2023, author = {Nchiozem-Ngnitedem, Vaderament-Alexe and Sperlich, Eric and Matieta, Valaire Yemene and Kuete, Jenifer Reine Ngnouzouba and Kuete, Victor and Omer, Ejlal A. A. and Efferth, Thomas and Schmidt, Bernd}, title = {Synthesis and bioactivity of isoflavones from ficus carica and some non-natural analogues}, series = {Journal of natural products : Lloydia}, volume = {86}, journal = {Journal of natural products : Lloydia}, number = {6}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {0163-3864}, doi = {10.1021/acs.jnatprod.3c00219}, pages = {1520 -- 1528}, year = {2023}, abstract = {FicucariconeD (1) and its 4 '-demethyl congener 2 are isoflavones isolated from fruits of Ficus carica that share a 5,7-dimethoxy-6-prenyl-substituted A-ring. Both naturalproducts were, for the first time, obtained by chemical synthesisin six steps, starting from 2,4,6-trihydroxyacetophenone. Key stepsare a microwave-promoted tandem sequence of Claisen- and Cope-rearrangementsto install the 6-prenyl substituent and a Suzuki-Miyaura crosscoupling for installing the B-ring. By using various boronic acids,non-natural analogues become conveniently available. All compoundswere tested for cytotoxicity against drug-sensitive and drug-resistanthuman leukemia cell lines, but were found to be inactive. The compoundswere also tested for antimicrobial activities against a panel of eightGram-negative and two Gram-positive bacterial strains. Addition ofthe efflux pump inhibitor phenylalanine-arginine-beta-naphthylamide(PA beta N) significantly improved the antibiotic activity in mostcases, with MIC values as low as 2.5 mu M and activity improvementfactors as high as 128-fold.}, language = {en} } @article{ZhaoSarhanEljarratetal.2022, author = {Zhao, Yuhang and Sarhan, Radwan Mohamed and Eljarrat, Alberto and Kochovski, Zdravko and Koch, Christoph and Schmidt, Bernd and Koopman, Wouter-Willem Adriaan and Lu, Yan}, title = {Surface-functionalized Au-Pd nanorods with enhanced photothermal conversion and catalytic performance}, series = {ACS applied materials \& interfaces}, volume = {14}, journal = {ACS applied materials \& interfaces}, number = {15}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1944-8244}, doi = {10.1021/acsami.2c00221}, pages = {17259 -- 17272}, year = {2022}, abstract = {Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60\% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10\% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration.}, language = {en} } @article{RiemerRiemerKruegeretal.2021, author = {Riemer, Nastja and Riemer, Martin and Kr{\"u}ger, Mandy and Clarkson, Guy J. and Shipman, Michael and Schmidt, Bernd}, title = {Synthesis of arylidene-beta-lactams via exo-selective Matsuda-Heck arylation of methylene-beta-lactams}, series = {The journal of organic chemistry : JOC}, volume = {86}, journal = {The journal of organic chemistry : JOC}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.1c00638}, pages = {8786 -- 8796}, year = {2021}, abstract = {exo-Methylene-beta-lactams were synthesized in two steps from commercially available 3-bromo-2-(bromomethyl)-propionic acid and reacted with arene diazonium salts in a Heck-type arylation in the presence of catalytic amounts of Pd(OAc)(2) under ligand-free conditions. The products, arylidene-beta-lactams, were obtained in high yields as single isomers. The beta-hydride elimination step of the Pd-catalyzed coupling reaction proceeds with high exo-regioselectivity and E-stereoselectivity. With aryl iodides, triflates, or bromides, the coupling products were isolated only in low yields, due to extensive decomposition of the starting material at elevated temperatures. This underlines that arene diazonium salts can be superior arylating reagents in Heck-type reactions and yield coupling products in synthetically useful yields and selectivities when conventional conditions fail.}, language = {en} } @article{OloyaNamukobeHeydenreichetal.2021, author = {Oloya, Benson and Namukobe, Jane and Heydenreich, Matthias and Ssengooba, Willy and Schmidt, Bernd and Byamukama, Robert}, title = {Antimycobacterial activity of the extract and isolated compounds from the stem bark of Zanthoxylum leprieurii Guill. and Perr.}, series = {Natural product communications : an international journal for communications and reviews}, volume = {16}, journal = {Natural product communications : an international journal for communications and reviews}, number = {8}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {1934-578X}, doi = {10.1177/1934578X211035851}, pages = {8}, year = {2021}, abstract = {Zanthoxylum leprieurii Guill. and Perr. (Rutaceae) stem bark is used locally in Uganda for treating tuberculosis (TB) and cough-related infections. Lupeol (1), sesamin (2), trans-fagaramide (3), arnottianamide (4), (S)-marmesinin (5), and hesperidin (6) were isolated from the chloroform/methanol (1:1) extract of Z. leprieurii stem bark. Their structures were elucidated using spectroscopic techniques and by comparison with literature data. Furthermore, the extract and isolated compounds were subjected to antimycobacterial activity. The extract exhibited moderate activity against the susceptible (H(37)Rv) TB strain, but weak activity against the multidrug resistant (MDR)-TB strain with minimum inhibitory concentrations (MICs) of 586.0 and 1172.0 mu g/mL, respectively. Compound 3 (trans-fagaramide) showed significant antimycobacterial activity against the susceptible (H(37)Rv) TB strain (MIC 6 mu g/mL), but moderate activity against the MDR-TB strain (MIC 12.2 mu g/mL). Compounds 2, 5, 6, and 1 showed moderate activities against the susceptible (H(37)Rv) strain (MIC 12.2-98.0 mu g/mL) and moderate to weak activities against the MDR-TB strain (MIC 24.4-195.0 mu g/mL). This study reports for the first time the isolation of compounds 1 to 6 from the stem bark of Z leprieurii. trans-Fagaramide (3) may present a vital template in pursuit of novel and highly effective TB drugs.}, language = {en} } @article{DebsharmaSchmidtLaschewskyetal.2021, author = {Debsharma, Tapas and Schmidt, Bernd and Laschewsky, Andre and Schlaad, Helmut}, title = {Ring-opening metathesis polymerization of unsaturated carbohydrate derivatives}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {54}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {6}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.0c02821}, pages = {2720 -- 2728}, year = {2021}, abstract = {A series of biomass-derived levoglucosenyl alkyl ethers (alkyl = methyl, ethyl, n-propyl, isopropyl, and n-butyl) were synthesized and polymerized by ring-opening olefin metathesis polymerization using the Grubbs catalyst C793 at room temperature. Polymerizations were successfully performed in conventional solvents such as 1,4-dioxane and dichloromethane as well as in polar aprotic "green" solvents such as 2-methyltetrahydrofuran, dihydrolevoglucosenone (Cyrene), and ethyl acetate. The prepared polyacetals with degrees of polymerization of similar to 100 exhibit Schulz-Flory-type molar mass distributions and are thermoplastic materials with rather low glass transition temperatures in the range of 43-0 degrees C depending on the length of the alkyl substituent. Kinetic studies revealed that the polymerization proceeded rapidly to a steady state with a certain minimum monomer concentration threshold. When the steady state was reached, just about half of the [Ru] catalyst had been effective to initiate the polymerization, indicating that the initiation step was a slow process. The remaining catalyst was still active and did no longer react with monomers but with in-chain double bonds, cutting the formed polymer chains into shorter fragments. In the long term, all catalyst was consumed and propagating [Ru] chain ends were deactivated by the elimination of [Ru] from the chain ends to form inactive chains with terminal aldehyde groups.}, language = {en} } @article{KwesigaKellingKerstingetal.2020, author = {Kwesiga, George and Kelling, Alexandra and Kersting, Sebastian and Sperlich, Eric and von Nickisch-Rosenegk, Markus and Schmidt, Bernd}, title = {Total syntheses of prenylated isoflavones from Erythrina sacleuxii and their antibacterial activity}, series = {Journal of natural products}, volume = {83}, journal = {Journal of natural products}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0163-3864}, doi = {10.1021/acs.jnatprod.0c00932}, pages = {3445 -- 3453}, year = {2020}, abstract = {The prenylated isoflavones 5-deoxyprenylbiochanin A (7-hydroxy-4'-methoxy-3'-prenylisoflavone) and erysubin F (7,4'-dihydroxy-8,3'-diprenylisoflavone) were synthesized for the first time, starting from mono-or di-O-allylated chalcones, and the structure of 5-deoxy-3'-prenylbiochanin A was corroborated by single-crystal X-ray diffraction analysis. Flavanones are key intermediates in the synthesis. Their reaction with hypervalent iodine reagents affords isoflavones via a 2,3-oxidative rearrangement and the corresponding flavone isomers via 2,3-dehydrogenation. This enabled a synthesis of 7,4'-dihydroxy-8,3'-diprenylflavone, a non-natural regioisomer of erysubin F. Erysubin F (8), 7,4'-dihydroxy-8,3'-diprenylflavone (27), and 5-deoxy-3'prenylbiochanin A (7) were tested against three bacterial strains and one fungal pathogen. All three compounds are inactive against Salmonella enterica subsp. enterica (NCTC 13349), Escherichia coli (ATCC 25922), and Candida albicans (ATCC 90028), with MIC values greater than 80.0 mu M. The diprenylated natural product erysubin F (8) and its flavone isomer 7,4'-dihydroxy-8,3'diprenylflavone (27) show in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) at MIC values of 15.4 and 20.5 mu M, respectively. In contrast, the monoprenylated 5-deoxy-3'-prenylbiochanin A (7) is inactive against this MRSA strain.}, language = {en} } @article{LoodTikkKruegeretal.2022, author = {Lood, Kajsa and Tikk, Triin and Kr{\"u}ger, Mandy and Schmidt, Bernd}, title = {Methylene capping facilitates cross-metathesis reactions of enals}, series = {The journal of organic chemistry}, volume = {87}, journal = {The journal of organic chemistry}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.1c02851}, pages = {3079 -- 3088}, year = {2022}, abstract = {Four combinations of type-I olefins isoeugenol and 4-hydroxy-3-methoxystyrene with type-II olefins acrolein and crotonaldehyde were investigated in cross-metathesis (CM) reactions. While both type-I olefins are suitable CM partners for this transformation, we observed synthetically useful conversions only with type-II olefin crotonaldehyde. For economic reasons, isoeugenol, a cheap xylochemical available from renewable lignocellulose or from clove oil, is the preferred type-I CM partner. Nearly quantitative conversions to coniferyl aldehyde by the CM reaction of isoeugenol and crotonaldehyde can be obtained at ambient temperature without a solvent or at high substrate concentrations of 2 mol.L-1 with the second-generation Hoveyda-Grubbs catalyst. Under these conditions, the ratio of reactants can be reduced to 1:1.5 and catalyst loadings as low as 0.25 mol \% are possible. The high reactivity of the isoeugenol/crotonaldehyde combination in olefin metathesis reactions was demonstrated by a short synthesis of the natural product 7-methoxywutaifuranal, which was obtained from isoeugenol in a 44\% yield over five steps. We suggest that the superior performance of crotonaldehyde in the CM reactions investigated can be rationalized by "methylene capping", i.e., the steric stabilization of the propagating Ru-alkylidene species.}, language = {en} } @article{KrauseSperlichSchmidt2021, author = {Krause, Andreas and Sperlich, Eric and Schmidt, Bernd}, title = {Matsuda-Heck arylation of itaconates}, series = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, volume = {19}, journal = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, number = {19}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-0520}, doi = {10.1039/d1ob00392e}, pages = {4292 -- 4302}, year = {2021}, abstract = {Itaconic acid esters and hemiesters undergo Pd-catalyzed coupling reactions with arene diazonium salts in high to excellent yields. The coupling products of ortho-nitro arene diazonium salts can be converted in one or two steps to benzazepine-2-ones.}, language = {en} } @article{HermannsSchmidtGlowinskietal.2020, author = {Hermanns, Jolanda and Schmidt, Bernd and Glowinski, Ingrid and Keller, David}, title = {Online teaching in the course "organic chemistry" for nonmajor chemistry students}, series = {Journal of chemical education}, volume = {97}, journal = {Journal of chemical education}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-9584}, doi = {10.1021/acs.jchemed.0c00658}, pages = {3140 -- 3146}, year = {2020}, abstract = {In this communication the development of an online course on the topic organic chemistry for nonmajor chemistry students is described and discussed. For this online course, the existing classroom course was further developed. New elements such as podcasts, task navigators, and a forum for discussing the solving of tasks or problems with the content were added. This new online course was evaluated. Therefore, a questionnaire was developed. This consists of questions with regard to the longtime learning behavior of the students and to the online learning. The results of this evaluation show that a preference for online learning and a preference for classroom teaching can be measured separately in two scales. Students values on the scale representing a preference for online learning correlate positively and significantly with confidence in the choice of the study subject, enthusiasm about the subject, and the ability to organize their learning, learning environment, and time management. They correlate also with the satisfaction concerning the materials provided. Students values for one of those teaching methods also correlate with their rating with regard to their exam preparation. Values representing a preference for online teaching correlate positively with students better feeling of exam preparation. Values representing a preference for classroom teaching show negative correlations with the values representing students similar or even better preparation for the exams as a result of online teaching. It is therefore not surprising that the ratings for the two scales correlate with the wish for a combination of online teaching and classroom teaching in the future. As a solution, a new course concept for the time after the corona virus crisis that suits all students is outlined in the outlook.}, language = {en} } @article{LoodSchmidt2020, author = {Lood, Kajsa and Schmidt, Bernd}, title = {Stereoselective synthesis of conjugated polyenes based on tethered olefin metathesis and carbonyl olefination}, series = {The journal of organic chemistry}, volume = {85}, journal = {The journal of organic chemistry}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.0c00446}, pages = {5122 -- 5130}, year = {2020}, abstract = {The combination of a highly stereoselective tethered olefin metathesis reaction and a Julia-Kocienski olefination is presented as a strategy for the synthesis of conjugated polyenes with at least one Z-configured C=C bond. The strategy is exemplified by the synthesis of the marine natural product (+)-bretonin B.}, language = {en} }