@phdthesis{Balazadeh2015, author = {Balazadeh, Salma}, title = {New insights into the molecular mechanisms of leaf senescence}, school = {Universit{\"a}t Potsdam}, year = {2015}, language = {en} } @article{Steup2015, author = {Steup, Martin}, title = {Raum und Zahl in der Pflanzenphysiologie}, series = {Raum und Zahl}, journal = {Raum und Zahl}, publisher = {Trafo}, address = {Berlin}, isbn = {978-3-86464-082-7}, pages = {77 -- 109}, year = {2015}, language = {de} } @phdthesis{Paijmans2015, author = {Paijmans, Johanna L. A.}, title = {Application of hybridisation capture to investigate complete mitogenomes from ancient samples}, school = {Universit{\"a}t Potsdam}, pages = {207}, year = {2015}, language = {en} } @phdthesis{Liebrich2015, author = {Liebrich, Marietta}, title = {Einfluss von Prozessoptimierungen auf die mikrobielle Diversit{\"a}t und die Effizienz der Gasbildung in Co-Verg{\"a}rungsanlagen der Abfallwirtschaft}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91066}, school = {Universit{\"a}t Potsdam}, pages = {VII, 102}, year = {2015}, abstract = {Im Hinblick auf die Problematik der Umweltverschmutzung durch die Nutzung fossiler Brennstoffe ist es n{\"o}tig, eine langfristig stabile und umweltfreundliche Energieversorgung zu gew{\"a}hrleisten. Eine M{\"o}glichkeit, den Energiebedarf CO2-neutral zu decken, ist die Nutzung von Biogas. Hierbei spielt der Einsatz von biogenen Reststoffen, die durch einen hohen Anteil an Kohlenhydraten, Fetten und Proteinen gekennzeichnet sind und daher ein hohes Biogaspotential besitzen, eine wichtige Rolle. Voraussetzung f{\"u}r die Effizienz und Rentabilit{\"a}t solcher Anlagen ist u. a. ein stabiler Gasbildungsprozess. Da bisher noch nicht alle Aspekte der Biogasbildung vollst{\"a}ndig verstanden sind, werden die Anlagen oft nicht optimal ausgelastet, um Prozessst{\"o}rungen wie z. B. {\"U}bers{\"a}uerung zu vermeiden. Um dennoch auftretende Prozessst{\"o}rungen zu beheben, k{\"o}nnen unterschiedliche Maßnahmen durchgef{\"u}hrt werden. Neben der Senkung der Raumbelastung, ist es m{\"o}glich, den pH-Wert durch die Zugabe von Natronlauge oder Calciumoxid anzuheben. In der vorliegenden Arbeit wurden sowohl Prozessst{\"o}rungen als auch Prozessregenerierungen an einer großtechnischen Biogasanlage und in Laborversuchen untersucht. Dabei galt es, neben den physikalischen und chemischen Parametern, die mikrobielle Bioz{\"o}nose mit Hilfe des genetischen Fingerprintings zu charakterisieren und {\"A}nderungen zu detektieren. W{\"a}hrend der Prozessregenerierungen wurden nach der Zugabe von CaO Ver{\"a}nderungen des G{\"a}rrestes beobachtet. Es bildeten sich Pellets, die im Hinblick auf ihre Funktion f{\"u}r die Prozessregenerierung und die Prozessstabilit{\"a}t molekularbiologisch und mikroskopisch untersucht wurden. Es wurde weiterhin der Frage nachgegangen, welche Rolle die Mikroorganismen bei der Entstehung der Pellets spielen. Die vor allem aus Calcium und Fetts{\"a}uren bestehenden Pellets dienten als Aufwuchsfl{\"a}chen f{\"u}r verschiedene Mikroorganismen. Die Bildung von Biofilmen, wie sie auf und in den Pellets nachgewiesen wurde, bot f{\"u}r Mikroorganismen einen Schutz vor negativen Umwelteinfl{\"u}ssen wie z. B. hohe Propions{\"a}urekonzentrationen. Unter diesen g{\"u}nstigen Bedingungen war die Bildung von Biogas auch unter hohen Wasserstoffpartialdr{\"u}cken, die den Abbau von Propions{\"a}ure hemmten, m{\"o}glich. Als Indikator f{\"u}r bessere Lebensbedingungen wurde im Laborversuch ein Methanoculleus receptaculi-verwandter Organismus identifiziert. Dieses methanogene Archaeon wurde im Pellet nachgewiesen, w{\"a}hrend es im G{\"a}rrest erst nach der Prozessregenerierung detektiert wurde. Der Nachweis eines im Vergleich zum umgebenden G{\"a}rrest h{\"o}heren Anteils an Archaeen im Kern der Pellets sowie von Biofilmen/EPS, verschiedenen Phosphatsalzen und schwerl{\"o}slichen Calciumsalzen zeigte, dass sowohl Pr{\"a}zipitation und Adsorption als auch Degradation von LCFA dazu f{\"u}hren, dass deren Konzentration im fl{\"u}ssigen G{\"a}rrest gesenkt wird. Dadurch nimmt die Hemmung auf die Bioz{\"o}nose ab und die Biogasbildungsrate steigt. Daher ist der Abbau der Fetts{\"a}uren auch bei einem niedrigen pH-Wert und unter hohen Wasserstoffpartialdr{\"u}cken m{\"o}glich und der Biogasbildungsprozess ist langfristig stabil. Die Bildung von Pellets unterst{\"u}tzt die Prozessstabilit{\"a}t, sofern diese nicht zu groß werden und dann u. a. die Durchmischung behindern und den Ablauf verstopfen. Nach erfolgreicher Prozessstabilisierung wurden keine Pellets im G{\"a}rrest beobachtet. Der Abbau des organischen Materials wurde sowohl durch die steigende Calciumkonzentration als auch die steigende Gasproduktion angezeigt.}, language = {de} } @phdthesis{Balk2015, author = {Balk, Maria}, title = {3D structured shape-memory hydrogels with enzymatically-induced shape shifting}, school = {Universit{\"a}t Potsdam}, pages = {128}, year = {2015}, language = {en} } @phdthesis{Apelt2015, author = {Apelt, Federico}, title = {Implementation of an imaging-based approach using a 3D light-field camera to analyse plant growth behaviour}, school = {Universit{\"a}t Potsdam}, pages = {227}, year = {2015}, language = {en} } @phdthesis{Ploetner2015, author = {Pl{\"o}tner, Bj{\"o}rn}, title = {F2 hybrid chlorosis in a cross between the Arabidopsis thaliana accessions Shahdara and Lovvik-5}, school = {Universit{\"a}t Potsdam}, pages = {99}, year = {2015}, language = {en} } @phdthesis{Olszewska2015, author = {Olszewska, Agata}, title = {Forming magnetic chain with the help of biological organisms}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89767}, school = {Universit{\"a}t Potsdam}, pages = {101}, year = {2015}, abstract = {Magnetite nanoparticles and their assembly comprise a new area of development for new technologies. The magnetic particles can interact and assemble in chains or networks. Magnetotactic bacteria are one of the most interesting microorganisms, in which the assembly of nanoparticles occurs. These microorganisms are a heterogeneous group of gram negative prokaryotes, which all show the production of special magnetic organelles called magnetosomes, consisting of a magnetic nanoparticle, either magnetite (Fe3O4) or greigite (Fe3S4), embedded in a membrane. The chain is assembled along an actin-like scaffold made of MamK protein, which makes the magnetosomes to arrange in mechanically stable chains. The chains work as a compass needle in order to allow cells to orient and swim along the magnetic field of the Earth. The formation of magnetosomes is known to be controlled at the molecular level. The physico-chemical conditions of the surrounding environment also influence biomineralization. The work presented in this manuscript aims to understand how such external conditions, in particular the extracellular oxidation reduction potential (ORP) influence magnetite formation in the strain Magnetospirillum magneticum AMB-1. A controlled cultivation of the microorganism was developed in a bioreactor and the formation of magnetosomes was characterized. Different techniques have been applied in order to characterize the amount of iron taken up by the bacteria and in consequence the size of magnetosomes produced at different ORP conditions. By comparison of iron uptake, morphology of bacteria, size and amount of magnetosomes per cell at different ORP, the formation of magnetosomes was inhibited at ORP 0 mV, whereas reduced conditions, ORP - 500 mV facilitate biomineralization process. Self-assembly of magnetosomes occurring in magnetotactic bacteria became an inspiration to learn from nature and to construct nanoparticles assemblies by using the bacteriophage M13 as a template. The M13 bacteriophage is an 800 nm long filament with encapsulated single-stranded DNA that has been recently used as a scaffold for nanoparticle assembly. I constructed two types of assemblies based on bacteriophages and magnetic nanoparticles. A chain - like assembly was first formed where magnetite nanoparticles are attached along the phage filament. A sperm - like construct was also built with a magnetic head and a tail formed by phage filament. The controlled assembly of magnetite nanoparticles on the phage template was possible due to two different mechanism of nanoparticle assembly. The first one was based on the electrostatic interactions between positively charged polyethylenimine coated magnetite nanoparticles and negatively charged phages. The second phage -nanoparticle assembly was achieved by bioengineered recognition sites. A mCherry protein is displayed on the phage and is was used as a linker to a red binding nanobody (RBP) that is fused to the one of the proteins surrounding the magnetite crystal of a magnetosome. Both assemblies were actuated in water by an external magnetic field showing their swimming behavior and potentially enabling further usage of such structures for medical applications. The speed of the phage - nanoparticles assemblies are relatively slow when compared to those of microswimmers previously published. However, only the largest phage-magnetite assemblies could be imaged and it is therefore still unclear how fast these structures can be in their smaller version.}, language = {en} } @phdthesis{Quast2015, author = {Quast, Robert B.}, title = {Synthesis and site-directed modification of membrane proteins using non-canonical amino acids in a cell-free system derived from cultured Spodoptera frugiperda cells}, school = {Universit{\"a}t Potsdam}, pages = {87}, year = {2015}, language = {en} } @phdthesis{Lischke2015, author = {Lischke, Betty}, title = {Food web regulation under different forcing regimes in shallow lakes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89149}, school = {Universit{\"a}t Potsdam}, pages = {131}, year = {2015}, abstract = {The standing stock and production of organismal biomass depends strongly on the organisms' biotic environment, which arises from trophic and non-trophic interactions among them. The trophic interactions between the different groups of organisms form the food web of an ecosystem, with the autotrophic and bacterial production at the basis and potentially several levels of consumers on top of the producers. Feeding interactions can regulate communities either by severe grazing pressure or by shortage of resources or prey production, termed top-down and bottom-up control, respectively. The limitations of all communities conglomerate in the food web regulation, which is subject to abiotic and biotic forcing regimes arising from external and internal constraints. This dissertation presents the effects of alterations in two abiotic, external forcing regimes, terrestrial matter input and long-lasting low temperatures in winter. Diverse methodological approaches, a complex ecosystem model study and the analysis of two whole-lake measurements, were performed to investigate effects for the food web regulation and the resulting consequences at the species, community and ecosystem scale. Thus, all types of organisms, autotrophs and heterotrophs, at all trophic levels were investigated to gain a comprehensive overview of the effects of the two mentioned altered forcing regimes. In addition, an extensive evaluation of the trophic interactions and resulting carbon fluxes along the pelagic and benthic food web was performed to display the efficiencies of the trophic energy transfer within the food webs. All studies were conducted in shallow lakes, which is worldwide the most abundant type of lakes. The specific morphology of shallow lakes allows that the benthic production contributes substantially to the whole-lake production. Further, as shallow lakes are often small they are especially sensitive to both, changes in the input of terrestrial organic matter and the atmospheric temperature. Another characteristic of shallow lakes is their appearance in alternative stable states. They are either in a clear-water or turbid state, where macrophytes and phytoplankton dominate, respectively. Both states can stabilize themselves through various mechanisms. These two alternative states and stabilizing mechanisms are integrated in the complex ecosystem model PCLake, which was used to investigate the effects of the enhanced terrestrial particulate organic matter (t-POM) input to lakes. The food web regulation was altered by three distinct pathways: (1) Zoobenthos received more food, increased in biomass which favored benthivorous fish and those reduced the available light due to bioturbation. (2) Zooplankton substituted autochthonous organic matter in their diet by suspended t-POM, thus the autochthonous organic matter remaining in the water reduced its transparency. (3) T-POM suspended into the water and reduced directly the available light. As macrophytes are more light-sensitive than phytoplankton they suffered the most from the lower transparency. Consequently, the resilience of the clear-water state was reduced by enhanced t-POM inputs, which makes the turbid state more likely at a given nutrient concentration. In two subsequent winters long-lasting low temperatures and a concurrent long duration of ice coverage was observed which resulted in low overall adult fish biomasses in the two study lakes - Schulzensee and Gollinsee, characterized by having and not having submerged macrophytes, respectively. Before the partial winterkill of fish Schulzensee allowed for a higher proportion of piscivorous fish than Gollinsee. However, the partial winterkill of fish aligned both communities as piscivorous fish are more sensitive to low oxygen concentrations. Young of the year fish benefitted extremely from the absence of adult fish due to lower predation pressure. Therefore, they could exert a strong top-down control on crustaceans, which restructured the entire zooplankton community leading to low crustacean biomasses and a community composition characterized by copepodites and nauplii. As a result, ciliates were released from top-down control, increased to high biomasses compared to lakes of various trophic states and depths and dominated the zooplankton community. While being very abundant in the study lakes and having the highest weight specific grazing rates among the zooplankton, ciliates exerted potentially a strong top-down control on small phytoplankton and particle-attached bacteria. This resulted in a higher proportion of large phytoplankton compared to other lakes. Additionally, the phytoplankton community was evenly distributed presumably due to the numerous fast growing and highly specific ciliate grazers. Although, the pelagic food web was completely restructured after the subsequent partial winterkills of fish, both lakes were resistant to effects of this forcing regime at the ecosystem scale. The consistently high predation pressure on phytoplankton prevented that Schulzensee switched from the clear-water to the turbid state. Further mechanisms, which potentially stabilized the clear-water state, were allelopathic effects by macrophytes and nutrient limitation in summer. The pelagic autotrophic and bacterial production was an order of magnitude more efficient transferred to animal consumers than the respective benthic production, despite the alterations of the food web structure after the partial winterkill of fish. Thus, the compiled mass-balanced whole-lake food webs suggested that the benthic bacterial and autotrophic production, which exceeded those of the pelagic habitat, was not used by animal consumers. This holds even true if the food quality, additional consumers such as ciliates, benthic protozoa and meiobenthos, the pelagic-benthic link and the potential oxygen limitation of macrobenthos were considered. Therefore, low benthic efficiencies suggest that lakes are primarily pelagic systems at least at the animal consumer level. Overall, this dissertation gives insights into the regulation of organism groups in the pelagic and benthic habitat at each trophic level under two different forcing regimes and displays the efficiency of the carbon transfer in both habitats. The results underline that the alterations of external forcing regimes affect all hierarchical level including the ecosystem.}, language = {en} }