@misc{CampbellHofreiter2015, author = {Campbell, Kevin L. and Hofreiter, Michael}, title = {Resurrecting phenotypes from ancient DNA sequences: promises and perspectives}, series = {Canadian journal of zoology = Revue canadienne de zoologie}, volume = {93}, journal = {Canadian journal of zoology = Revue canadienne de zoologie}, number = {9}, publisher = {NRC Research Press}, address = {Ottawa}, issn = {0008-4301}, doi = {10.1139/cjz-2014-0337}, pages = {701 -- 710}, year = {2015}, abstract = {Anatomical changes in extinct mammalian lineages over evolutionary time, such as the loss of fingers and teeth and the rapid increase in body size that accompanied the late Miocene dispersal of the progenitors of Steller's sea cows (Hydrodamalis gigas (Zimmermann, 1780)) into North Pacific waters and the convergent development of a thick pelage and accompanying reductions in ear and tail surface area of woolly mammoths (Mammuthus primigenius (Blumenbach, 1799)) and woolly rhinoceros (Coelodonta antiquitatis (Blumenbach, 1799)), are prime examples of adaptive evolution underlying the exploitation of new habitats. It is likely, however, that biochemical specializations adopted during these evolutionary transitions were of similar or even greater biological importance. As these "living" processes do not fossilize, direct information regarding the physiological attributes of extinct species has largely remained beyond the range of scientific inquiry. However, the ability to retrieve genomic sequences from ancient DNA samples, combined with ectopic expression systems, now permit the evolutionary origins and structural and functional properties of authentic prehistoric proteins to be examined in great detail. Exponential technical advances in ancient DNA retrieval, enrichment, and sequencing will soon permit targeted generation of complete genomes from hundreds of extinct species across the last one million years that, in combination with emerging in vitro expression, genome engineering, and cell differentiation techniques, promises to herald an exciting new trajectory of evolutionary research at the interface of biochemistry, genomics, palaeontology, and cell biology.}, language = {en} } @misc{KnappLaluezaFoxHofreiter2015, author = {Knapp, Michael and Lalueza-Fox, Carles and Hofreiter, Michael}, title = {Re-inventing ancient human DNA}, series = {Investigative Genetics}, volume = {6}, journal = {Investigative Genetics}, publisher = {BioMed Central}, address = {London}, issn = {2041-2223}, doi = {10.1186/s13323-015-0020-4}, pages = {11}, year = {2015}, abstract = {For a long time, the analysis of ancient human DNA represented one of the most controversial disciplines in an already controversial field of research. Scepticism in this field was only matched by the long-lasting controversy over the authenticity of ancient pathogen DNA. This ambiguous view on ancient human DNA had a dichotomous root. On the one hand, the interest in ancient human DNA is great because such studies touch on the history and evolution of our own species. On the other hand, because these studies are dealing with samples from our own species, results are easily compromised by contamination of the experiments with modern human DNA, which is ubiquitous in the environment. Consequently, some of the most disputed studies published - apart maybe from early reports on million year old dinosaur or amber DNA - reported DNA analyses from human subfossil remains. However, the development of so-called next-or second-generation sequencing (SGS) in 2005 and the technological advances associated with it have generated new confidence in the genetic study of ancient human remains. The ability to sequence shorter DNA fragments than with PCR amplification coupled to traditional Sanger sequencing, along with very high sequencing throughput have both reduced the risk of sequencing modern contamination and provided tools to evaluate the authenticity of DNA sequence data. The field is now rapidly developing, providing unprecedented insights into the evolution of our own species and past human population dynamics as well as the evolution and history of human pathogens and epidemics. Here, we review how recent technological improvements have rapidly transformed ancient human DNA research from a highly controversial subject to a central component of modern anthropological research. We also discuss potential future directions of ancient human DNA research.}, language = {en} }