@phdthesis{Nita2005, author = {Nita, Ana-Silvia}, title = {Genetic mapping and molecular characterization of tbr1 mutant in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5992}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Arabidopsis thaliana trichomes exhibit strong birefringence under polarized light, a characteristic of cell walls containing large amounts of highly ordered cellulose microfibrils. The tbr1 mutant of Arabidopsis lacks trichome birefringence and is deficient in secondary cell wall cellulose synthesis (Potikha and Delmer, 1995). The TBR gene was identified by recombinational mapping, candidate gene sequencing and molecular complementation using genomic cosmid clones, as well as a p35S:TBR genomic DNA construct, fully rescuing the mutant phenotype in both cases. The only mutant allele available (tbr-1) carries a substitution (G to E) in a conserved aminoacid domain of the protein. TBR gene structure was proved to have a longer size than the one found to be annotated at the time of identification in the data-base. A full cDNA clone containing the full transcript was available and also complementation experiments using different gene fragments (annotated and suggested) leaded to the result that TBR gene is indeed, longer. TBR encodes a novel plant-specific protein with predicted plasma membrane localization, therefore being consistent with idea that is required for-, or is a novel component of a functional cellulose synthase complex. TBR is part of an Arabidopsis gene/protein family, (TBL-trichome birefringence like) which, depending on homology, comprises up to 20 members, none of which has a biological or biochemical function attributed. T-DNA insertion lines in TBR gene and two close homologues have been screened by PCR, but no homozygous were found and no trichomes phenotype was identified. Promoter-GUS lines were produced for TBR, as well as for its two closest homologues (one being a segmentally duplicated gene on chromosome III), using 1.6-2 kb of promoter sequence upstream of the annotated start codons. The TBR promoter was the only one of the three that yielded trichome expression, this probably explaining the phenotype of the TBR mutant. Moreover, TBR is expressed in leaves, in growing lateral roots, and in vascular tissues of young Arabidopsis seedlings and plantlets. Later on, the expression appears in inflorescens, stems, flowers and green siliques. This expression pattern is largely overlapping with those of the two analyzed homologues and it corresponds with data of RT-PCR expression profiling performed for TBR and the two analyzed homologues in different tissues, at different developmental stages. Biochemical analysis of cell wall (leaves and trichomes), as GC and MALDI-TOF, were performed, but revealed no major differences between tbr1 and wild type plants. Scanning electron microscopy analysis and cell wall polysaccharides antibody labeling showed a clear difference in the trichomes cell wall structure between mutant plant and wild type.}, subject = {tbr mutant}, language = {en} }