@article{GendreBaralDangetal.2019, author = {Gendre, Delphine and Baral, Anirban and Dang, Xie and Esnay, Nicolas and Boutte, Yohann and Stanislas, Thomas and Vain, Thomas and Claverol, Stephane and Gustavsson, Anna and Lin, Deshu and Grebe, Markus and Bhalerao, Rishikesh P.}, title = {Rho-of-plant activated root hair formation requires Arabidopsis YIP4a/b gene function}, series = {Development : Company of Biologists}, volume = {146}, journal = {Development : Company of Biologists}, number = {5}, publisher = {The Company of Biologists}, address = {Cambridge}, issn = {0950-1991}, doi = {10.1242/dev.168559}, pages = {7}, year = {2019}, abstract = {Root hairs are protrusions from root epidermal cells with crucial roles in plant soil interactions. Although much is known about patterning, polarity and tip growth of root hairs, contributions of membrane trafficking to hair initiation remain poorly understood. Here, we demonstrate that the trans-Golgi network-localized YPT-INTERACTING PROTEIN 4a and YPT-INTERACTING PROTEIN 4b (YIP4a/b) contribute to activation and plasma membrane accumulation of Rho-of-plant (ROP) small GTPases during hair initiation, identifying YIP4a/b as central trafficking components in ROP-dependent root hair formation.}, language = {en} } @article{FrescatadaRosaStanislasBackuesetal.2014, author = {Frescatada-Rosa, Marcia and Stanislas, Thomas and Backues, Steven K. and Reichardt, Ilka and Men, Shuzhen and Boutte, Yohann and Juergens, Gerd and Moritz, Thomas and Bednarek, Sebastian York and Grebe, Markus}, title = {High lipid order of Arabidopsis cell-plate membranes mediated by sterol and Dynamin-Related Protein 1A function}, series = {The plant journal}, volume = {80}, journal = {The plant journal}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.12674}, pages = {745 -- 757}, year = {2014}, abstract = {Membranes of eukaryotic cells contain high lipid-order sterol-rich domains that are thought to mediate temporal and spatial organization of cellular processes. Sterols are crucial for execution of cytokinesis, the last stage of cell division, in diverse eukaryotes. The cell plate of higher-plant cells is the membrane structure that separates daughter cells during somatic cytokinesis. Cell-plate formation in Arabidopsis relies on sterol- and DYNAMIN-RELATED PROTEIN1A (DRP1A)-dependent endocytosis. However, functional relationships between lipid membrane order or lipid packing and endocytic machinery components during eukaryotic cytokinesis have not been elucidated. Using ratiometric live imaging of lipid order-sensitive fluorescent probes, we show that the cell plate of Arabidopsis thaliana represents a dynamic, high lipid-order membrane domain. The cell-plate lipid order was found to be sensitive to pharmacological and genetic alterations of sterol composition. Sterols co-localize with DRP1A at the cell plate, and DRP1A accumulates in detergent-resistant membrane fractions. Modifications of sterol concentration or composition reduce cell-plate membrane order and affect DRP1A localization. Strikingly, DRP1A function itself is essential for high lipid order at the cell plate. Our findings provide evidence that the cell plate represents a high lipid-order domain, and pave the way to explore potential feedback between lipid order and function of dynamin-related proteins during cytokinesis.}, language = {en} }