@article{AhmedReynaGonzalezSchmidetal.2017, author = {Ahmed, Muhammad N. and Reyna-Gonzalez, Emmanuel and Schmid, Bianca and Wiebach, Vincent and Suessmuth, Roderich D. and Dittmann, Elke and Fewer, David P.}, title = {Phylogenomic Analysis of the Microviridin Biosynthetic Pathway Coupled with Targeted Chemo-Enzymatic Synthesis Yields Potent Protease Inhibitors}, series = {ACS chemical biology}, volume = {12}, journal = {ACS chemical biology}, publisher = {American Chemical Society}, address = {Washington}, issn = {1554-8929}, doi = {10.1021/acschembio.7b00124}, pages = {1538 -- 1546}, year = {2017}, abstract = {Natural products and their semisynthetic derivatives are an important source of drugs for the pharmaceutical industry. Bacteria are prolific producers of natural products and encode a vast diversity of natural product biosynthetic gene clusters. However, much of this diversity is inaccessible to natural product discovery. Here, we use a combination of phylogenomic analysis of the microviridin biosynthetic pathway and chemo-enzymatic synthesis of bioinformatically predicted microviridins to yield new protease inhibitors. Phylogenomic analysis demonstrated that microviridin biosynthetic gene clusters occur across the bacterial domain and encode three distinct subtypes of precursor peptides. Our analysis shed light on the evolution of microviridin biosynthesis and enabled prioritization of their chemo-enzymatic production. Targeted one-pot synthesis of four microviridins encoded by the cyanobacterium Cyanothece sp. PCC 7822 identified a set of novel and potent serine protease inhibitors, the most active of which had an IC50 value of 21.5 nM. This study advances the genome mining techniques available for natural product discovery and obviates the need to culture bacteria.}, language = {en} } @article{DehmKrumbholzBaunachetal.2019, author = {Dehm, Daniel and Krumbholz, Julia and Baunach, Martin and Wiebach, Vincent and Hinrichs, Katrin and Guljamow, Arthur and Tabuchi, Takeshi and Jenke-Kodama, Holger and S{\"u}ssmuth, Roderich D. and Dittmann-Th{\"u}nemann, Elke}, title = {Unlocking the spatial control of secondary metabolism uncovers hidden natural product diversity in nostoc punctiforme}, series = {ACS chemical biology}, volume = {14}, journal = {ACS chemical biology}, number = {6}, publisher = {American Chemical Society}, address = {Washington}, issn = {1554-8929}, doi = {10.1021/acschembio.9b00240}, pages = {1271 -- 1279}, year = {2019}, abstract = {Filamentous cyanobacteria belong to the most prolific producers of structurally unique and biologically active natural products, yet the majority of biosynthetic gene clusters predicted for these multicellular collectives are currently orphan. Here, we present a systems analysis of secondary metabolite gene expression in the model strain Nostoc punctiforme PCC73102 using RNA-seq and fluorescence reporter analysis. Our data demonstrate that the majority of the cryptic gene clusters are not silent but are expressed with regular or sporadic pattern. Cultivation of N. punctiforme using high-density fermentation overrules the spatial control and leads to a pronounced upregulation of more than 50\% of biosynthetic gene clusters. Our data suggest that a combination of autocrine factors, a high CO2 level, and high light account for the upregulation of individual pathways. Our overarching study not only sheds light on the strategies of filamentous cyanobacteria to share the enormous metabolic burden connected with the production of specialized molecules but provides an avenue for the genome-based discovery of natural products in multicellular cyanobacteria as exemplified by the discovery of highly unusual variants of the tricyclic peptide microviridin.}, language = {en} }