@article{HenkelColemanSchraplauetal.2017, author = {Henkel, Janin and Coleman, Charles Dominic and Schraplau, Anne and J{\"o}hrens, Korinna and Weber, Daniela and Castro, Jose Pedro and Hugo, Martin and Schulz, Tim Julius and Kr{\"a}mer, Stephanie and Sch{\"u}rmann, Annette and P{\"u}schel, Gerhard Paul}, title = {Induction of Steatohepatitis (NASH) with Insulin Resistance in Wild-type B6 Mice by a Western-type Diet Containing Soybean Oil and Cholesterol}, series = {Molecular medicine}, volume = {23}, journal = {Molecular medicine}, publisher = {Feinstein Inst. for Medical Research}, address = {Manhasset}, issn = {1076-1551}, doi = {10.2119/molmed.2016.00203}, pages = {70 -- 82}, year = {2017}, abstract = {Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are hepatic manifestations of the metabolic syndrome. Many currently used animal models of NAFLD/NASH lack clinical features of either NASH or metabolic syndrome such as hepatic inflammation and fibrosis (e.g., high-fat diets) or overweight and insulin resistance (e.g., methionine-choline-deficient diets), or they are based on monogenetic defects (e.g., ob/ob mice). In the current study, a Western-type diet containing soybean oil with high n-6-PUFA and 0.75\% cholesterol (SOD + Cho) induced steatosis, inflammation and fibrosis accompanied by hepatic lipid peroxidation and oxidative stress in livers of C57BL/6-mice, which in addition showed increased weight gain and insulin resistance, thus displaying a phenotype closely resembling all clinical features of NASH in patients with metabolic syndrome. In striking contrast, a soybean oil-containing Western-type diet without cholesterol (SOD) induced only mild steatosis but not hepatic inflammation, fibrosis, weight gain or insulin resistance. Another high-fat diet, mainly consisting of lard and supplemented with fructose in drinking water (LAD + Fru), resulted in more prominent weight gain, insulin resistance and hepatic steatosis than SOD + Cho, but livers were devoid of inflammation and fibrosis. Although both LAD + Fru-and SOD + Cho-fed animals had high plasma cholesterol, liver cholesterol was elevated only in SOD + Cho animals. Cholesterol induced expression of chemotactic and inflammatory cytokines in cultured Kupffer cells and rendered hepatocytes more susceptible to apoptosis. In summary, dietary cholesterol in the SOD + Cho diet may trigger hepatic inflammation and fibrosis. SOD + Cho-fed animals may be a useful disease model displaying many clinical features of patients with the metabolic syndrome and NASH.}, language = {en} } @article{CastanoMartinezSchumacherSchumacheretal.2019, author = {Casta{\~n}o Mart{\´i}nez, Mar{\´i}a Teresa and Schumacher, Fabian and Schumacher, Silke and Kochlik, Bastian and Weber, Daniela and Grune, Tilman and Biemann, Ronald and McCann, Adrian and Abraham, Klaus and Weikert, Cornelia and Kleuse, Burkhard and Sch{\"u}rmann, Annette and Laeger, Thomas}, title = {Methionine restriction prevents onset of type 2 diabetes in NZO mice}, series = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, volume = {33}, journal = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, number = {6}, publisher = {Federation of American Societies for Experimental Biology}, address = {Bethesda}, issn = {0892-6638}, doi = {10.1096/fj.201900150R}, pages = {7092 -- 7102}, year = {2019}, abstract = {Dietary methionine restriction (MR) is well known to reduce body weight by increasing energy expenditure (EE) and insulin sensitivity. An elevated concentration of circulating fibroblast growth factor 21 (FGF21) has been implicated as a potential underlying mechanism. The aims of our study were to test whether dietary MR in the context of a high-fat regimen protects against type 2 diabetes in mice and to investigate whether vegan and vegetarian diets, which have naturally low methionine levels, modulate circulating FGF21 in humans. New Zealand obese (NZO) mice, a model for polygenic obesity and type 2 diabetes, were placed on isocaloric high-fat diets (protein, 16 kcal\%; carbohydrate, 52 kcal\%; fat, 32 kcal\%) that provided methionine at control (Con; 0.86\% methionine) or low levels (0.17\%) for 9 wk. Markers of glucose homeostasis and insulin sensitivity were analyzed. Among humans, low methionine intake and circulating FGF21 levels were investigated by comparing a vegan and a vegetarian diet to an omnivore diet and evaluating the effect of a short-term vegetarian diet on FGF21 induction. In comparison with the Con group, MR led to elevated plasma FGF21 levels and prevented the onset of hyperglycemia in NZO mice. MR-fed mice exhibited increased insulin sensitivity, higher plasma adiponectin levels, increased EE, and up-regulated expression of thermogenic genes in subcutaneous white adipose tissue. Food intake and fat mass did not change. Plasma FGF21 levels were markedly higher in vegan humans compared with omnivores, and circulating FGF21 levels increased significantly in omnivores after 4 d on a vegetarian diet. These data suggest that MR induces FGF21 and protects NZO mice from high-fat diet-induced glucose intolerance and type 2 diabetes. The normoglycemic phenotype in vegans and vegetarians may be caused by induced FGF21. MR akin to vegan and vegetarian diets in humans may offer metabolic benefits via increased circulating levels of FGF21 and merits further investigation.-Castano-Martinez, T., Schumacher, F., Schumacher, S., Kochlik, B., Weber, D., Grune, T., Biemann, R., McCann, A., Abraham, K., Weikert, C., Kleuser, B., Schurmann, A., Laeger, T. Methionine restriction prevents onset of type 2 diabetes in NZO mice.}, language = {en} }