@article{KunstmannGohlkeBroekeretal.2018, author = {Kunstmann, Ruth Sonja and Gohlke, Ulrich and Br{\"o}ker, Nina Kristin and Roske, Yvette and Heinemann, Udo and Santer, Mark and Barbirz, Stefanie}, title = {Solvent networks tune thermodynamics of oligosaccharide complex formation in an extended protein binding site}, series = {Journal of the American Chemical Society}, volume = {140}, journal = {Journal of the American Chemical Society}, number = {33}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.8b03719}, pages = {10447 -- 10455}, year = {2018}, abstract = {The principles of protein-glycan binding are still not well understood on a molecular level. Attempts to link affinity and specificity of glycan recognition to structure suffer from the general lack of model systems for experimental studies and the difficulty to describe the influence of solvent. We have experimentally and computationally addressed energetic contributions of solvent in protein-glycan complex formation in the tailspike protein (TSP) of E. coli bacteriophage HK620. HK620TSP is a 230 kDa native trimer of right-handed, parallel beta-helices that provide extended, rigid binding sites for bacterial cell surface O-antigen polysaccharides. A set of high affinity mutants bound hexa- or pentasaccharide O-antigen fragments with very similar affinities even though hexasaccharides introduce an additional glucose branch into an occluded protein surface cavity. Remarkably different thermodynamic binding signatures were found for different mutants; however, crystal structure analyses indicated that no major oligosaccharide or protein topology changes had occurred upon complex formation. This pointed to a solvent effect. Molecular dynamics simulations using a mobility-based approach revealed an extended network of solvent positions distributed over the entire oligosaccharide binding site. However, free energy calculations showed that a small water network inside the glucose-binding cavity had the most notable influence on the thermodynamic signature. The energy needed to displace water from the glucose binding pocket depended on the amino acid at the entrance, in agreement with the different amounts of enthalpy-entropy compensation found for introducing glucose into the pocket in the different mutants. Studies with small molecule drugs have shown before that a few active water molecules can control protein complex formation. HK620TSP oligosaccharide binding shows that similar fundamental principles also apply for glycans, where a small number of water molecules can dominate the thermodynamic signature in an extended binding site.}, language = {en} } @article{BroekerRoskeVallerianietal.2019, author = {Broeker, Nina K. and Roske, Yvette and Valleriani, Angelo and Stephan, Mareike Sophia and Andres, Dorothee and Koetz, Joachim and Heinemann, Udo and Barbirz, Stefanie}, title = {Time-resolved DNA release from an O-antigen-specific Salmonella bacteriophage with a contractile tail}, series = {The journal of biological chemistry}, volume = {294}, journal = {The journal of biological chemistry}, number = {31}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {1083-351X}, doi = {10.1074/jbc.RA119.008133}, pages = {11751 -- 11761}, year = {2019}, abstract = {Myoviruses, bacteriophages with T4-like architecture, must contract their tails prior to DNA release. However, quantitative kinetic data on myovirus particle opening are lacking, although they are promising tools in bacteriophage-based antimicrobial strategies directed against Gram-negative hosts. For the first time, we show time-resolved DNA ejection from a bacteriophage with a contractile tail, the multi-O-antigen-specific Salmonella myovirus Det7. DNA release from Det7 was triggered by lipopolysaccharide (LPS) O-antigen receptors and notably slower than in noncontractile-tailed siphoviruses. Det7 showed two individual kinetic steps for tail contraction and particle opening. Our in vitro studies showed that highly specialized tailspike proteins (TSPs) are necessary to attach the particle to LPS. A P22-like TSP confers specificity for the Salmonella Typhimurium O-antigen. Moreover, crystal structure analysis at 1.63 angstrom resolution confirmed that Det7 recognized the Salmonella Anatum O-antigen via an E15-like TSP, DettilonTSP. DNA ejection triggered by LPS from either host showed similar velocities, so particle opening is thus a process independent of O-antigen composition and the recognizing TSP. In Det7, at permissive temperatures TSPs mediate O-antigen cleavage and couple cell surface binding with DNA ejection, but no irreversible adsorption occurred at low temperatures. This finding was in contrast to short-tailed Salmonella podoviruses, illustrating that tailed phages use common particle-opening mechanisms but have specialized into different infection niches.}, language = {en} } @article{AndresRoskeDoeringetal.2012, author = {Andres, Dorothee and Roske, Yvette and Doering, Carolin and Heinemann, Udo and Seckler, Robert and Barbirz, Stefanie}, title = {Tail morphology controls DNA release in two Salmonella phages with one lipopolysaccharide receptor recognition system}, series = {Molecular microbiology}, volume = {83}, journal = {Molecular microbiology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0950-382X}, doi = {10.1111/j.1365-2958.2012.08006.x}, pages = {1244 -- 1253}, year = {2012}, abstract = {Bacteriophages use specific tail proteins to recognize host cells. It is still not understood to molecular detail how the signal is transmitted over the tail to initiate infection. We have analysed in vitro DNA ejection in long-tailed siphovirus 9NA and short-tailed podovirus P22 upon incubation with Salmonella typhimurium lipopolysaccharide (LPS). We showed for the first time that LPS alone was sufficient to elicit DNA release from a siphovirus in vitro. Crystal structure analysis revealed that both phages use similar tailspike proteins for LPS recognition. Tailspike proteins hydrolyse LPS O antigen to position the phage on the cell surface. Thus we were able to compare in vitro DNA ejection processes from two phages with different morphologies with the same receptor under identical experimental conditions. Siphovirus 9NA ejected its DNA about 30 times faster than podovirus P22. DNA ejection is under control of the conformational opening of the particle and has a similar activation barrier in 9NA and P22. Our data suggest that tail morphology influences the efficiencies of particle opening given an identical initial receptor interaction event.}, language = {en} }