@article{TuckerBoehningGaeseFaganetal.2018, author = {Tucker, Marlee A. and Boehning-Gaese, Katrin and Fagan, William F. and Fryxell, John M. and Van Moorter, Bram and Alberts, Susan C. and Ali, Abdullahi H. and Allen, Andrew M. and Attias, Nina and Avgar, Tal and Bartlam-Brooks, Hattie and Bayarbaatar, Buuveibaatar and Belant, Jerrold L. and Bertassoni, Alessandra and Beyer, Dean and Bidner, Laura and van Beest, Floris M. and Blake, Stephen and Blaum, Niels and Bracis, Chloe and Brown, Danielle and de Bruyn, P. J. Nico and Cagnacci, Francesca and Calabrese, Justin M. and Camilo-Alves, Constanca and Chamaille-Jammes, Simon and Chiaradia, Andre and Davidson, Sarah C. and Dennis, Todd and DeStefano, Stephen and Diefenbach, Duane and Douglas-Hamilton, Iain and Fennessy, Julian and Fichtel, Claudia and Fiedler, Wolfgang and Fischer, Christina and Fischhoff, Ilya and Fleming, Christen H. and Ford, Adam T. and Fritz, Susanne A. and Gehr, Benedikt and Goheen, Jacob R. and Gurarie, Eliezer and Hebblewhite, Mark and Heurich, Marco and Hewison, A. J. Mark and Hof, Christian and Hurme, Edward and Isbell, Lynne A. and Janssen, Rene and Jeltsch, Florian and Kaczensky, Petra and Kane, Adam and Kappeler, Peter M. and Kauffman, Matthew and Kays, Roland and Kimuyu, Duncan and Koch, Flavia and Kranstauber, Bart and LaPoint, Scott and Leimgruber, Peter and Linnell, John D. C. and Lopez-Lopez, Pascual and Markham, A. Catherine and Mattisson, Jenny and Medici, Emilia Patricia and Mellone, Ugo and Merrill, Evelyn and Mourao, Guilherme de Miranda and Morato, Ronaldo G. and Morellet, Nicolas and Morrison, Thomas A. and Diaz-Munoz, Samuel L. and Mysterud, Atle and Nandintsetseg, Dejid and Nathan, Ran and Niamir, Aidin and Odden, John and Oliveira-Santos, Luiz Gustavo R. and Olson, Kirk A. and Patterson, Bruce D. and de Paula, Rogerio Cunha and Pedrotti, Luca and Reineking, Bjorn and Rimmler, Martin and Rogers, Tracey L. and Rolandsen, Christer Moe and Rosenberry, Christopher S. and Rubenstein, Daniel I. and Safi, Kamran and Said, Sonia and Sapir, Nir and Sawyer, Hall and Schmidt, Niels Martin and Selva, Nuria and Sergiel, Agnieszka and Shiilegdamba, Enkhtuvshin and Silva, Joao Paulo and Singh, Navinder and Solberg, Erling J. and Spiegel, Orr and Strand, Olav and Sundaresan, Siva and Ullmann, Wiebke and Voigt, Ulrich and Wall, Jake and Wattles, David and Wikelski, Martin and Wilmers, Christopher C. and Wilson, John W. and Wittemyer, George and Zieba, Filip and Zwijacz-Kozica, Tomasz and Mueller, Thomas}, title = {Moving in the Anthropocene}, series = {Science}, volume = {359}, journal = {Science}, number = {6374}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aam9712}, pages = {466 -- 469}, year = {2018}, abstract = {Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.}, language = {en} } @article{HofmanHaywardHeimetal.2019, author = {Hofman, Maarten P. G. and Hayward, M. W. and Heim, M. and Marchand, P. and Rolandsen, C. M. and Mattisson, Jenny and Urbano, F. and Heurich, M. and Mysterud, A. and Melzheimer, J. and Morellet, N. and Voigt, Ulrich and Allen, B. L. and Gehr, Benedikt and Rouco Zufiaurre, Carlos and Ullmann, Wiebke and Holand, O. and Jorgensen, n H. and Steinheim, G. and Cagnacci, F. and Kroeschel, M. and Kaczensky, P. and Buuveibaatar, B. and Payne, J. C. and Palmegiani, I and Jerina, K. and Kjellander, P. and Johansson, O. and LaPoint, S. and Bayrakcismith, R. and Linnell, J. D. C. and Zaccaroni, M. and Jorge, M. L. S. and Oshima, J. E. F. and Songhurst, A. and Fischer, C. and Mc Bride, R. T. and Thompson, J. J. and Streif, S. and Sandfort, R. and Bonenfant, Christophe and Drouilly, M. and Klapproth, M. and Zinner, Dietmar and Yarnell, Richard and Stronza, A. and Wilmott, L. and Meisingset, E. and Thaker, Maria and Vanak, A. T. and Nicoloso, S. and Graeber, R. and Said, S. and Boudreau, M. R. and Devlin, A. and Hoogesteijn, R. and May-Junior, J. A. and Nifong, J. C. and Odden, J. and Quigley, H. B. and Tortato, F. and Parker, D. M. and Caso, A. and Perrine, J. and Tellaeche, C. and Zieba, F. and Zwijacz-Kozica, T. and Appel, C. L. and Axsom, I and Bean, W. T. and Cristescu, B. and Periquet, S. and Teichman, K. J. and Karpanty, S. and Licoppe, A. and Menges, V and Black, K. and Scheppers, Thomas L. and Schai-Braun, S. C. and Azevedo, F. C. and Lemos, F. G. and Payne, A. and Swanepoel, L. H. and Weckworth, B. and Berger, A. and Bertassoni, Alessandra and McCulloch, G. and Sustr, P. and Athreya, V and Bockmuhl, D. and Casaer, J. and Ekori, A. and Melovski, D. and Richard-Hansen, C. and van de Vyver, D. and Reyna-Hurtado, R. and Robardet, E. and Selva, N. and Sergiel, A. and Farhadinia, M. S. and Sunde, P. and Portas, R. and Ambarli, H{\"u}seyin and Berzins, R. and Kappeler, P. M. and Mann, G. K. and Pyritz, L. and Bissett, C. and Grant, T. and Steinmetz, R. and Swedell, Larissa and Welch, R. J. and Armenteras, D. and Bidder, O. R. and Gonzalez, T. M. and Rosenblatt, A. and Kachel, S. and Balkenhol, N.}, title = {Right on track?}, series = {PLoS one}, volume = {14}, journal = {PLoS one}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0216223}, pages = {26}, year = {2019}, abstract = {Satellite telemetry is an increasingly utilized technology in wildlife research, and current devices can track individual animal movements at unprecedented spatial and temporal resolutions. However, as we enter the golden age of satellite telemetry, we need an in-depth understanding of the main technological, species-specific and environmental factors that determine the success and failure of satellite tracking devices across species and habitats. Here, we assess the relative influence of such factors on the ability of satellite telemetry units to provide the expected amount and quality of data by analyzing data from over 3,000 devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the success rate in obtaining GPS fixes as well as in transferring these fixes to the user and we evaluate failure rates. Average fix success and data transfer rates were high and were generally better predicted by species and unit characteristics, while environmental characteristics influenced the variability of performance. However, 48\% of the unit deployments ended prematurely, half of them due to technical failure. Nonetheless, this study shows that the performance of satellite telemetry applications has shown improvements over time, and based on our findings, we provide further recommendations for both users and manufacturers.}, language = {en} }