@article{RodriguezCubillosTongAlseekhetal.2018, author = {Rodriguez Cubillos, Andres Eduardo and Tong, Hao and Alseekh, Saleh and de Abreu e Lima, Francisco Anastacio and Yu, Jing and Fernie, Alisdair R. and Nikoloski, Zoran and Laitinen, Roosa A. E.}, title = {Inheritance patterns in metabolism and growth in diallel crosses of Arabidopsis thaliana from a single growth habitat}, series = {Heredity}, volume = {120}, journal = {Heredity}, number = {5}, publisher = {Nature Publ. Group}, address = {London}, issn = {0018-067X}, doi = {10.1038/s41437-017-0030-5}, pages = {463 -- 473}, year = {2018}, abstract = {Metabolism is a key determinant of plant growth and modulates plant adaptive responses. Increased metabolic variation due to heterozygosity may be beneficial for highly homozygous plants if their progeny is to respond to sudden changes in the habitat. Here, we investigate the extent to which heterozygosity contributes to the variation in metabolism and size of hybrids of Arabidopsis thaliana whose parents are from a single growth habitat. We created full diallel crosses among seven parents, originating from Southern Germany, and analysed the inheritance patterns in primary and secondary metabolism as well as in rosette size in situ. In comparison to primary metabolites, compounds from secondary metabolism were more variable and showed more pronounced non-additive inheritance patterns which could be attributed to epistasis. In addition, we showed that glucosinolates, among other secondary metabolites, were positively correlated with a proxy for plant size. Therefore, our study demonstrates that heterozygosity in local A. thaliana population generates metabolic variation and may impact several tasks directly linked to metabolism.}, language = {en} } @misc{LaitinenNikoloski2018, author = {Laitinen, Roosa A. E. and Nikoloski, Zoran}, title = {Genetic basis of plasticity in plants}, series = {Journal of experimental botany}, volume = {70}, journal = {Journal of experimental botany}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/ery404}, pages = {739 -- 745}, year = {2018}, abstract = {The ability of an organism to change its phenotype in response to different environments, termed plasticity, is a particularly important characteristic to enable sessile plants to adapt to rapid changes in their surroundings. Plasticity is a quantitative trait that can provide a fitness advantage and mitigate negative effects due to environmental perturbations. Yet, its genetic basis is not fully understood. Alongside technological limitations, the main challenge in studying plasticity has been the selection of suitable approaches for quantification of phenotypic plasticity. Here, we propose a categorization of the existing quantitative measures of phenotypic plasticity into nominal and relative approaches. Moreover, we highlight the recent advances in the understanding of the genetic architecture underlying phenotypic plasticity in plants. We identify four pillars for future research to uncover the genetic basis of phenotypic plasticity, with emphasis on development of computational approaches and theories. These developments will allow us to perform specific experiments to validate the causal genes for plasticity and to discover their role in plant fitness and evolution.}, language = {en} } @article{PandeyYuOmranianetal.2019, author = {Pandey, Prashant K. and Yu, Jing and Omranian, Nooshin and Alseekh, Saleh and Vaid, Neha and Fernie, Alisdair R. and Nikoloski, Zoran and Laitinen, Roosa A. E.}, title = {Plasticity in metabolism underpins local responses to nitrogen in Arabidopsis thaliana populations}, series = {Plant Direct}, volume = {3}, journal = {Plant Direct}, number = {11}, publisher = {John Wiley \& sonst LTD}, address = {Chichester}, issn = {2475-4455}, doi = {10.1002/pld3.186}, pages = {6}, year = {2019}, abstract = {Nitrogen (N) is central for plant growth, and metabolic plasticity can provide a strategy to respond to changing N availability. We showed that two local A. thaliana populations exhibited differential plasticity in the compounds of photorespiratory and starch degradation pathways in response to three N conditions. Association of metabolite levels with growth-related and fitness traits indicated that controlled plasticity in these pathways could contribute to local adaptation and play a role in plant evolution.}, language = {en} }