@article{AlbrechtHaebelKochetal.2004, author = {Albrecht, Tanja and Haebel, Sophie and Koch, Anke and Krause, Ulrike and Eckermann, Nora and Steup, Martin}, title = {Yeast glycogenin (Glg2p) produced in Escherichia coli is simultaneously glucosylated at two vicinal tyrosin residues but results in a reduced bacterial glycogen accumulation}, year = {2004}, abstract = {Saccharomyces cerevisiae possesses two glycogenin isoforms (designated as Glg1p and Glg2p) that both contain a conserved tyrosine residue, Tyr232. However, Glg2p possesses an additional tyrosine residue, Tyr230 and therefore two potential autoglucosylation sites. Glucosylation of Glg2p was studied using both matrix-assisted laser desorption ionization and electrospray quadrupole time of flight mass spectrometry. Glg2p, carrying a C-terminal (His(6)) tag, was produced in Escherichia coli and purified. By tryptic digestion and reversed phase chromatography a peptide (residues 219-246 of the complete Glg2p sequence) was isolated that contained 4-25 glucosyl residues. Following incubation of Glg2p with UDPglucose, more than 36 glucosyl residues were covalently bound to this peptide. Using a combination of cyanogen bromide cleavage of the protein backbone, enzymatic hydrolysis of glycosidic bonds and reversed phase chromatography, mono- and diglucosylated peptides having the sequence PNYGYQSSPAM were generated. MS/MS spectra revealed that glucosyl residues were attached to both Tyr232 and Tyr230 within the same peptide. The formation of the highly glucosylated eukaryotic Glg2p did not favour the bacterial glycogen accumulation. Under various experimental conditions Glg2p-producing cells accumulated approximately 30\% less glycogen than a control transformed with a Glg2p lacking plasmid. The size distribution of the glycogen and extractable activities of several glycogen-related enzymes were essentially unchanged. As revealed by high performance anion exchange chromatography, the intracellular maltooligosaccharide pattern of the bacterial cells expressing the functional eukaryotic transgene was significantly altered. Thus, the eukaryotic glycogenin appears to be incompatible with the bacterial initiation of glycogen biosynthesis}, language = {en} } @article{AlbrechtKochLodeetal.2001, author = {Albrecht, Tanja and Koch, Anke and Lode, Anja and Greve, Burkhard and Schneider-Mergener, Jens and Steup, Martin}, title = {Plastidic (Pho1-type) phosphorylase isoforms in potato (Solanum tuberosum L.) plants : expression analysis and immunochemical characterization}, year = {2001}, language = {en} } @article{MalinovaKoesslerOrawetzetal.2019, author = {Malinova, Irina and K{\"o}ssler, Stella and Orawetz, Tom and Matthes, Ulrike and Orzechowski, Slawomir and Koch, Anke and Fettke, J{\"o}rg}, title = {Identification of two Arabidopsis thaliana plasma membrane transporters able to transport glucose 1-phosphate}, series = {Plant \& cell physiology}, volume = {61}, journal = {Plant \& cell physiology}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0032-0781}, doi = {10.1093/pcp/pcz206}, pages = {381 -- 392}, year = {2019}, abstract = {Primary carbohydrate metabolism in plants includes several sugar and sugar-derivative transport processes. Over recent years, evidences have shown that in starch-related transport processes, in addition to glucose 6-phosphate, maltose, glucose and triose-phosphates, glucose 1-phosphate also plays a role and thereby increases the possible fluxes of sugar metabolites in planta. In this study, we report the characterization of two highly similar transporters, At1g34020 and At4g09810, in Arabidopsis thaliana, which allow the import of glucose 1-phosphate through the plasma membrane. Both transporters were expressed in yeast and were biochemically analyzed to reveal an antiport of glucose 1-phosphate/phosphate. Furthermore, we showed that the apoplast of Arabidopsis leaves contained glucose 1-phosphate and that the corresponding mutant of these transporters had higher glucose 1-phosphate amounts in the apoplast and alterations in starch and starch-related metabolism.}, language = {en} }