@phdthesis{Kath2022, author = {Kath, Nadja Jeanette}, title = {Functional traits determine biomass dynamics, coexistence and energetics in plankton food webs}, doi = {10.25932/publishup-55123}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-551239}, school = {Universit{\"a}t Potsdam}, pages = {197}, year = {2022}, abstract = {Plankton food webs are the basis of marine and limnetic ecosystems. Especially aquatic ecosystems of high biodiversity provide important ecosystem services for humankind as providers of food, coastal protection, climate regulation, and tourism. Understanding the dynamics of biomass and coexistence in these food webs is a first step to understanding the ecosystems. It also lays the foundation for the development of management strategies for the maintenance of the marine and freshwater biodiversity despite anthropogenic influences. Natural food webs are highly complex, and thus often equally complex methods are needed to analyse and understand them well. Models can help to do so as they depict simplified parts of reality. In the attempt to get a broader understanding of the complex food webs, diverse methods are used to investigate different questions. In my first project, we compared the energetics of a food chain in two versions of an allometric trophic network model. In particular, we solved the problem of unrealistically high trophic transfer efficiencies (up to 70\%) by accounting for both basal respiration and activity respiration, which decreased the trophic transfer efficiency to realistic values of ≤30\%. Next in my second project I turned to plankton food webs and especially phytoplankton traits. Investigating a long-term data set from Lake Constance we found evidence for a trade-off between defence and growth rate in this natural phytoplankton community. I continued working with this data set in my third project focusing on ciliates, the main grazer of phytoplankton in spring. Boosted regression trees revealed that temperature and predators have the highest influence on net growth rates of ciliates. We finally investigated in my fourth project a food web model inspired by ciliates to explore the coexistence of plastic competitors and to study the new concept of maladaptive switching, which revealed some drawbacks of plasticity: faster adaptation led to higher maladaptive switching towards undefended phenotypes which reduced autotroph biomass and coexistence and increased consumer biomass. It became obvious that even well-established models should be critically questioned as it is important not to forget reality on the way to a simplistic model. The results showed furthermore that long-term data sets are necessary as they can help to disentangle complex natural processes. Last, one should keep in mind that the interplay between models and experiments/ field data can deliver fruitful insights about our complex world.}, language = {en} } @article{KathGaedkevanVelzen2022, author = {Kath, Nadja Jeanette and Gaedke, Ursula and van Velzen, Ellen}, title = {The double-edged sword of inducible defences: costs and benefits of maladaptive switching from the individual to the community level}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-13895-7}, pages = {1 -- 14}, year = {2022}, abstract = {Phenotypic plasticity can increase individual fitness when environmental conditions change over time. Inducible defences are a striking example, allowing species to react to fluctuating predation pressure by only expressing their costly defended phenotype under high predation risk. Previous theoretical investigations have focused on how this affects predator-prey dynamics, but the impact on competitive outcomes and broader community dynamics has received less attention. Here we use a small food web model, consisting of two competing plastic autotrophic species exploited by a shared consumer, to study how the speed of inducible defences across three trade-off constellations affects autotroph coexistence, biomasses across trophic levels, and temporal variability. Contrary to the intuitive idea that faster adaptation increases autotroph fitness, we found that higher switching rates reduced individual fitness as it consistently provoked more maladaptive switching towards undefended phenotypes under high predation pressure. This had an unexpected positive impact on the consumer, increasing consumer biomass and lowering total autotroph biomass. Additionally, maladaptive switching strongly reduced autotroph coexistence through an emerging source-sink dynamic between defended and undefended phenotypes. The striking impact of maladaptive switching on species and food web dynamics indicates that this mechanism may be of more critical importance than previously recognized.}, language = {en} } @article{KathGaedkevanVelzen2022, author = {Kath, Nadja Jeanette and Gaedke, Ursula and van Velzen, Ellen}, title = {The double-edged sword of inducible defences: costs and benefits of maladaptive switching from the individual to the community level}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1288}, issn = {1866-8372}, doi = {10.25932/publishup-57200}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572006}, pages = {14}, year = {2022}, abstract = {Phenotypic plasticity can increase individual fitness when environmental conditions change over time. Inducible defences are a striking example, allowing species to react to fluctuating predation pressure by only expressing their costly defended phenotype under high predation risk. Previous theoretical investigations have focused on how this affects predator-prey dynamics, but the impact on competitive outcomes and broader community dynamics has received less attention. Here we use a small food web model, consisting of two competing plastic autotrophic species exploited by a shared consumer, to study how the speed of inducible defences across three trade-off constellations affects autotroph coexistence, biomasses across trophic levels, and temporal variability. Contrary to the intuitive idea that faster adaptation increases autotroph fitness, we found that higher switching rates reduced individual fitness as it consistently provoked more maladaptive switching towards undefended phenotypes under high predation pressure. This had an unexpected positive impact on the consumer, increasing consumer biomass and lowering total autotroph biomass. Additionally, maladaptive switching strongly reduced autotroph coexistence through an emerging source-sink dynamic between defended and undefended phenotypes. The striking impact of maladaptive switching on species and food web dynamics indicates that this mechanism may be of more critical importance than previously recognized.}, language = {en} } @article{EhrlichKathGaedke2020, author = {Ehrlich, Elias and Kath, Nadja Jeanette and Gaedke, Ursula}, title = {The shape of a defense-growth trade-off governs seasonal trait dynamics in natural phytoplankton}, series = {The ISME journal}, volume = {14}, journal = {The ISME journal}, number = {6}, publisher = {Nature Publishing Group}, address = {London}, issn = {1751-7362}, doi = {10.1038/s41396-020-0619-1}, pages = {1451 -- 1462}, year = {2020}, abstract = {Theory predicts that trade-offs, quantifying costs of functional trait adjustments, crucially affect community trait adaptation to altered environmental conditions, but empirical verification is scarce. We evaluated trait dynamics (antipredator defense, maximum growth rate, and phosphate affinity) of a lake phytoplankton community in a seasonally changing environment, using literature trait data and 21 years of species-resolved high-frequency biomass measurements. The trait data indicated a concave defense-growth trade-off, promoting fast-growing species with intermediate defense. With seasonally increasing grazing pressure, the community shifted toward higher defense levels at the cost of lower growth rates along the trade-off curve, while phosphate affinity explained some deviations from it. We discuss how low fitness differences of species, inferred from model simulations, in concert with stabilizing mechanisms, e.g., arising from further trait dimensions, may lead to the observed phytoplankton diversity. In conclusion, quantifying trade-offs is key for predictions of community trait adaptation and biodiversity under environmental change.}, language = {en} } @misc{EhrlichKathGaedke2020, author = {Ehrlich, Elias and Kath, Nadja Jeanette and Gaedke, Ursula}, title = {The shape of a defense-growth trade-off governs seasonal trait dynamics in natural phytoplankton}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {6}, issn = {1866-8372}, doi = {10.25932/publishup-51395}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-513956}, pages = {14}, year = {2020}, abstract = {Theory predicts that trade-offs, quantifying costs of functional trait adjustments, crucially affect community trait adaptation to altered environmental conditions, but empirical verification is scarce. We evaluated trait dynamics (antipredator defense, maximum growth rate, and phosphate affinity) of a lake phytoplankton community in a seasonally changing environment, using literature trait data and 21 years of species-resolved high-frequency biomass measurements. The trait data indicated a concave defense-growth trade-off, promoting fast-growing species with intermediate defense. With seasonally increasing grazing pressure, the community shifted toward higher defense levels at the cost of lower growth rates along the trade-off curve, while phosphate affinity explained some deviations from it. We discuss how low fitness differences of species, inferred from model simulations, in concert with stabilizing mechanisms, e.g., arising from further trait dimensions, may lead to the observed phytoplankton diversity. In conclusion, quantifying trade-offs is key for predictions of community trait adaptation and biodiversity under environmental change.}, language = {en} }