@phdthesis{BysaniKondagari2023, author = {Bysani Kondagari, Viswanada Reddy}, title = {Engineering and evolution of saccharomyces cerevisiae for synthetic formatotrophic growth via the reductive glycine pathway}, doi = {10.25932/publishup-58222}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582222}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2023}, abstract = {Increasing demand for food, healthcare, and transportation arising from the growing world population is accompanied by and driving global warming challenges due to the rise of the atmospheric CO2 concentration. Industrialization for human needs has been increasingly releasing CO2 into the atmosphere for the last century or more. In recent years, the possibility of recycling CO2 to stabilize the atmospheric CO2 concentration and combat rising temperatures has gained attention. Thus, using CO2 as the feedstock to address future world demands is the ultimate solution while controlling the rapid climate change. Valorizing CO2 to produce activated and stable one-carbon feedstocks like formate and methanol and further upgrading them to industrial microbial processes to replace unsustainable feedstocks would be crucial for a future biobased circular economy. However, not all microbes can grow on formate as a feedstock, and those microbes that can grow are not well established for industrial processes. S. cerevisiae is one of the industrially well-established microbes, and it is a significant contributor to bioprocess industries. However, it cannot grow on formate as a sole carbon and energy source. Thus, engineering S. cerevisiae to grow on formate could potentially pave the way to sustainable biomass and value-added chemicals production. The Reductive Glycine Pathway (RGP), designed as the aerobic twin of the anaerobic Reductive Acetyl-CoA pathway, is an efficient formate and CO2 assimilation pathway. The RGP comprises of the glycine synthesis module (Mis1p, Gcv1p, Gcv2p, Gcv3p, and Lpd1p), the glycine to serine conversion module (Shmtp), the pyruvate synthesis module (Cha1p), and the energy supply module (Fdh1p). The RGP requires formate and elevated CO2 levels to operate the glycine synthesis module. In this study, I established the RGP in the yeast system using growth-coupled selection strategies to achieve formate and CO2-dependent biomass formation in aerobic conditions. Firstly, I constructed serine biosensor strains by disrupting the native serine and glycine biosynthesis routes in the prototrophic S288c and FL100 yeast strains and insulated serine, glycine, and one-carbon metabolism from the central metabolic network. These strains cannot grow on glucose as the sole carbon source but require the supply of serine or glycine to complement the engineered auxotrophies. Using growth as a readout, I employed these strains as selection hosts to establish the RGP. Initially, to achieve this, I engineered different serine-hydroxymethyltransferases in the genome of serine biosensor strains for efficient glycine to serine conversion. Then, I implemented the glycine synthesis module of the RGP in these strains for the glycine and serine synthesis from formate and CO2. I successfully conducted Adaptive Laboratory Evolution (ALE) using these strains, which yielded a strain capable of glycine and serine biosynthesis from formate and CO2. Significant growth improvements from 0.0041 h-1 to 0.03695 h-1 were observed during ALE. To validate glycine and serine synthesis, I conducted carbon tracing experiments with 13C formate and 13CO2, confirming that more than 90\% of glycine and serine biosynthesis in the evolved strains occurs via the RGP. Interestingly, labeling data also revealed that 10-15\% of alanine was labelled, indicating pyruvate synthesis from the formate-derived serine using native serine deaminase (Cha1p) activity. Thus, RGP contributes to a small pyruvate pool which is converted to alanine without any selection pressure for pyruvate synthesis from formate. Hence, this data confirms the activity of all three modules of RGP even in the presence of glucose. Further, ALE in glucose limiting conditions did not improve pyruvate flux via the RGP. Growth characterization of these strains showed that the best growth rates were achieved in formate concentrations between 25 mM to 300 mM. Optimum growth required 5\% CO2, and dropped when the CO2 concentration was reduced from 5\% to 2.5\%. Whole-genome sequencing of these evolved strains revealed mutations in genes that encode Gdh1p, Pet9p, and Idh1p. These enzymes might influence intracellular NADPH, ATP, and NADH levels, indicating adjustment to meet the energy demand of the RGP. I reverse-engineered the GDH1 truncation mutation on unevolved serine biosensor strains and reproduced formate dependent growth. To elucidate the effect of the GDH1 mutation on formate assimilation, I reintroduced this mutation in the S288c strain and conducted carbon-tracing experiments to compared formate assimilation between WT and ∆gdh1 mutant strains. Comparatively, enhanced formate assimilation was recorded in the ∆gdh1 mutant strain. Although the 13C carbon tracing experiments confirmed the activity of all three modules of the RGP, the overall pyruvate flux via the RGP might be limited by the supply of reducing power. Hence, in a different approach, I overexpressed the formate dehydrogenase (Fdh1p) for energy supply and serine deaminase (Cha1p) for active pyruvate synthesis in the S288c parental strain and established growth on formate and serine without glucose in the medium. Further reengineering and evolution of this strain with a consistent energy, and formate-derived serine supply for pyruvate synthesis, is essential to achieve complete formatotrophic growth in the yeast system.}, language = {en} }