@article{ReichBeckerSeckleretal.2009, author = {Reich, Lothar and Becker, Marion and Seckler, Robert and Weikl, Thomas R.}, title = {In vivo folding efficiencies for mutants of the P22 tailspike beta-helix protein correlate with predicted stability changes}, issn = {0301-4622}, doi = {10.1016/j.bpc.2009.01.015}, year = {2009}, abstract = {Parallel A-helices are among the simplest repetitive structural elements in proteins. The folding behavior of A- helix proteins has been studied intensively, also to gain insight on the formation of amyloid fibrils, which share the parallel beta-helix as a central structural motif. An important system for investigating beta-helix folding is the tailspike protein from the Salmonella bacteriophage P22. The central domain of this protein is a right-handed parallel beta-helix with 13 windings. Extensive mutational analyses of the P22 tailspike protein have revealed two main phenotypes: temperature-sensitive-folding (tsf) mutations that reduce the folding efficiency at elevated temperatures, and global suppressor (su) mutations that increase the tailspike folding efficiency. A central question is whether these phenotypes can be understood from changes in the protein stability induced by the mutations. Experimental determination of the protein stability is complicated by the nearly irreversible trimerization of the folded tailspike protein. Here, we present calculations of stability changes with the program FoldX, focusing on a recently published extensive data set of 145 singe-residue alanine mutants. We find that the calculated stability changes are correlated with the experimentally measured in vivo folding efficiencies. In addition, we determine the free-energy landscape of the P22 tailspike protein in a nucleation-propagation model to explore the folding mechanism of this protein, and obtain a processive folding route on which the protein nucleates in the N-terminal region of the helix.}, language = {en} } @article{BarbirzBeckerFreibergetal.2009, author = {Barbirz, Stefanie and Becker, Marion and Freiberg, Alexander and Seckler, Robert}, title = {Phage tailspike proteins with beta-solenoid fold as thermostable carbohydrate binding materials}, issn = {1616-5187}, doi = {10.1002/mabi.200800278}, year = {2009}, abstract = {We have investigated the stability of three tailspike proteins (TSPs) from bacteriophages Sf6, P22, and HK620. Tailspikes are rod-like homotrimers with comparable beta-solenoid folds and similarly high kinetic stability in spite of different amino acid sequences. As tailspikes bind polysaccharides to recognize the bacterial host cell, their stability is required for maintenance of bacteriophage infectivity under harsh extracellular conditions. They resist denaturation by SDS at ambient temperature and their unfolding is slow even in 6 m guanidinium hydrochloride (GdmHCl). This makes them interesting candidates for very stable carbohydrate binding protein materials.}, language = {en} } @phdthesis{Becker2009, author = {Becker, Marion}, title = {Bedeutung eines hydrophoben Seitenkettenstapels f{\"u}r Stabilit{\"a}t, Faltung und Struktur des P22 Tailspikeproteins}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42674}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Das homotrimere Tailspikeadh{\"a}sin des Bakteriophagen P22 ist ein etabliertes Modellsystem, dessen Faltung, Assemblierung und Stabilit{\"a}t in vivo und in vitro umfassend charakterisiert ist. Das zentrale Strukturmotiv des Proteins ist eine parallele beta-Helix mit 13 Windungen, die von einer N‑terminalen Kapsidbindedom{\"a}ne und einer C‑terminalen Trimerisierungsdom{\"a}ne flankiert wird. Jede Windung beinhaltet drei kurze beta-Str{\"a}nge, die durch turns und loops unterschiedlicher L{\"a}nge verbunden sind. Durch den sich strukturell wiederholenden, spulenf{\"o}rmigen Aufbau formen beta-Str{\"a}nge benachbarter Windungen elongierte beta-Faltbl{\"a}tter. Das Lumen der beta-Helix beinhaltet gr{\"o}ßtenteils hydrophobe Seitenketten, welche linear und sehr regelm{\"a}ßig entlang der L{\"a}ngsachse gestapelt sind. Eine hoch repetitive Struktur, ausgedehnte beta-Faltbl{\"a}tter und die regelm{\"a}ßige Anordnung von {\"a}hnlichen oder identischen Seitenketten entlang der beta-Faltblattachse sind ebenfalls typische Kennzeichen von Amyloidfibrillen, die bei Proteinfaltungskrankheiten wie Alzheimer, der Creutzfeld-Jakob-Krankheit, Chorea Huntington und Typ-II-Diabetes gebildet werden. Es wird vermutet, dass die hohe Stabilit{\"a}t des Tailspikeproteins und auch die der Amyloidfibrille durch Seitenkettenstapelung, einem geordneten Netzwerk von Wasserstoffbr{\"u}ckenbindungen und den rigiden, oligomeren Verbund bedingt ist. Um den Einfluss der Seitenkettenstapelung auf die Stabilit{\"a}t, Faltung und Struktur des P22 Tailspikeproteins zu untersuchen, wurden sieben Valine in einem im Lumen der beta-Helix begrabenen Seitenkettenstapel gegen das kleinere und weniger hydrophobe Alanin und das volumin{\"o}sere Leucin substituiert. Der Einfluss der Mutationen wurde anhand zweier Tailspikevarianten, dem trimeren, N‑terminal verk{\"u}rzten TSPdeltaN‑Konstrukt und der monomeren, isolierten beta-Helix Dom{\"a}ne analysiert. Generell wurde in den Experimenten deutlich, dass Mutationen zu Alanin st{\"a}rkere Effekte ausl{\"o}sen als Mutationen zu Leucin. Die dichte und hydrophobe Packung im Kern der beta-Helix bildet somit die Basis f{\"u}r Stabilit{\"a}t und Faltung des Proteins. Anhand hoch aufgel{\"o}ster Kristallstrukturen jeweils zweier Alanin‑ und Leucin‑Mutanten konnte verdeutlicht werden, dass das Strukturmotiv der parallelen beta-Helix stark formbar ist und mutationsbedingte {\"A}nderungen des Seitenkettenvolumens durch kleine und lokale Verschiebung der Haupt‑ und Seitenketten ausgeglichen werden, sodass m{\"o}gliche Kavit{\"a}ten gef{\"u}llt und sterische Spannung abgebaut werden k{\"o}nnen. Viele Mutanten zeigten in vivo und in vitro einen temperatursensitiven Faltungsph{\"a}notyp (temperature sensitive for folding, tsf), d.h. bei Temperaturerh{\"o}hung waren die Ausbeuten des N‑terminal verk{\"u}rzten Trimers im Vergleich zum Wildtyp deutlich verringert. Weiterf{\"u}hrende Experimente zeigten, dass der tsf‑Ph{\"a}notyp durch die Beeinflussung unterschiedlicher Stadien des Reifungsprozesses oder auch durch die Verminderung der kinetischen Stabilit{\"a}t des nativen Trimers ausgel{\"o}st wurde. Durch Untersuchungen am vollst{\"a}ndigen und am N‑terminal verk{\"u}rzten Wildtypprotein wurde gezeigt, dass die Entfaltungsreaktion des Tailspiketrimers komplex ist. Die Verl{\"a}ufe der Kinetiken folgen zwar einem apparenten Zweizustandsverhalten, jedoch sind bei Darstellung der Entfaltungs{\"a}ste im Chevronplot die Abh{\"a}ngigkeiten der Geschwindigkeitskonstanten vom Denaturierungsmittel nicht linear, sondern in unterschiedliche Richtungen gew{\"o}lbt. Dieses Verhalten k{\"o}nnte durch ein hoch energetisches Entfaltungsintermediat, einen breiten {\"U}bergangsbereich oder parallele Entfaltungswege hervorgerufen sein. Mit Hilfe der monomeren, isolierten beta-Helix Dom{\"a}ne, bei der die N‑terminale Capsidbindedom{\"a}ne und die C‑terminale Trimerisierungsdom{\"a}ne deletiert sind und welche als unabh{\"a}ngige Faltungseinheit fungiert, wurde gezeigt, dass alle Mutanten im Harnstoff‑induzierten Gleichgewicht analog zum Wildtypprotein einem Zweizustandsverhalten mit vergleichbaren Kooperativit{\"a}ten folgen. Die konformationellen Stabilit{\"a}ten von in der beta-Helix zentral gelegenen Alanin‑ und Leucin‑Mutanten sind stark vermindert, w{\"a}hrend Mutationen in {\"a}ußeren Bereichen der Dom{\"a}ne keinen Einfluss auf die Stabilit{\"a}t der beta-Helix haben. Bei Verl{\"a}ngerung der Inkubationszeiten der Gleichgewichtsexperimente konnte die langsame Bildung von Aggregaten im {\"U}bergangsbereich der destabilisierten Mutanten detektiert werden. Die in der Arbeit erlangten Erkenntnisse lassen vermuten, dass die isolierte beta-Helix einem f{\"u}r die Reifung des Tailspikeproteins entscheidenden thermolabilen Faltungsintermediat auf Monomerebene sehr {\"a}hnlich ist. Im Intermediat ist ein zentraler Kern, der die Windungen 4 bis 7 und die „R{\"u}ckenflosse" beinhaltet, stabilit{\"a}tsbestimmend. Dieser Kern k{\"o}nnte als Faltungsnukleus dienen, an den sich sequenziell weitere Helixwindungen anlagern und im Zuge der „Monomerreifung" kompaktieren.}, language = {de} }