@article{SchwiederWesemeyerFrantzetal.2022, author = {Schwieder, Marcel and Wesemeyer, Maximilian and Frantz, David and Pfoch, Kira and Erasmi, Stefan and Pickert, J{\"u}rgen and Nendel, Claas and Hostert, Patrick}, title = {Mapping grassland mowing events across Germany based on combined Sentinel-2 and Landsat 8 time series}, series = {Remote sensing of environment}, volume = {269}, journal = {Remote sensing of environment}, publisher = {Elsevier}, address = {New York}, issn = {0034-4257}, doi = {10.1016/j.rse.2021.112795}, pages = {16}, year = {2022}, abstract = {Spatially explicit knowledge on grassland extent and management is critical to understand and monitor the impact of grassland use intensity on ecosystem services and biodiversity. While regional studies allow detailed insights into land use and ecosystem service interactions, information on a national scale can aid biodiversity assessments. However, for most European countries this information is not yet widely available. We used an analysis-ready-data cube that contains dense time series of co-registered Sentinel-2 and Landsat 8 data, covering the extent of Germany. We propose an algorithm that detects mowing events in the time series based on residuals from an assumed undisturbed phenology, as an indicator of grassland use intensity. A self-adaptive ruleset enabled to account for regional variations in land surface phenology and non-stationary time series on a pixelbasis. We mapped mowing events for the years from 2017 to 2020 for permanent grassland areas in Germany. The results were validated on a pixel level in four of the main natural regions in Germany based on reported mowing events for a total of 92 (2018) and 78 (2019) grassland parcels. Results for 2020 were evaluated with combined time series of Landsat, Sentinel-2 and PlanetScope data. The mean absolute percentage error between detected and reported mowing events was on average 40\% (2018), 36\% (2019) and 35\% (2020). Mowing events were on average detected 11 days (2018), 7 days (2019) and 6 days (2020) after the reported mowing. Performance measures varied between the different regions of Germany, and lower accuracies were found in areas that are revisited less frequently by Sentinel-2. Thus, we assessed the influence of data availability and found that the detection of mowing events was less influenced by data availability when at least 16 cloud-free observations were available in the grassland season. Still, the distribution of available observations throughout the season appeared to be critical. On a national scale our results revealed overall higher shares of less intensively mown grasslands and smaller shares of highly intensively managed grasslands. Hotspots of the latter were identified in the alpine foreland in Southern Germany as well as in the lowlands in the Northwest of Germany. While these patterns were stable throughout the years, the results revealed a tendency to lower management intensity in the extremely dry year 2018. Our results emphasize the ability of the approach to map the intensity of grassland management throughout large areas despite variations in data availability and environmental conditions.}, language = {en} } @article{AlshareefOtterbachAlluetal.2022, author = {Alshareef, Nouf Owdah and Otterbach, Sophie L. and Allu, Annapurna Devi and Woo, Yong H. and de Werk, Tobias and Kamranfar, Iman and M{\"u}ller-R{\"o}ber, Bernd and Tester, Mark and Balazadeh, Salma and Schm{\"o}ckel, Sandra M.}, title = {NAC transcription factors ATAF1 and ANAC055 affect the heat stress response in Arabidopsis}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-022-14429-x}, pages = {15}, year = {2022}, abstract = {Pre-exposing (priming) plants to mild, non-lethal elevated temperature improves their tolerance to a later higher-temperature stress (triggering stimulus), which is of great ecological importance. 'Thermomemory' is maintaining this tolerance for an extended period of time. NAM/ATAF1/2/ CUC2 (NAC) proteins are plant-specific transcription factors (TFs) that modulate responses to abiotic stresses, including heat stress (HS). Here, we investigated the potential role of NACs for thermomemory. We determined the expression of 104 Ara bidopsis NAC genes after priming and triggering heat stimuli, and found ATAF1 expression is strongly induced right after priming and declines below control levels thereafter during thermorecovery. Knockout mutants of ATAF1 show better thermomemory than wild type, revealing a negative regulatory role. Differential expression analyses of RNA-seq data from ATAF1 overexpressor, ataf1 mutant and wild-type plants after heat priming revealed five genes that might be priming-associated direct targets of ATAF1: AT2G31260 (ATG9), AT2G41640 (GT61), AT3G44990 (XTH31), AT4G27720 and AT3G23540. Based on co-expression analyses applied to the aforementioned RNA-seq profiles, we identified ANAC055 to be transcriptionally co-regulated with ATAF1. Like atafl, anac055 mutants show improved thermomemory, revealing a potential co-control of both NACTFs over thermomemory. Our data reveals a core importance of two NAC transcription factors, ATAF1 and ANAC055, for thermomemory.}, language = {en} } @article{HoangGryzikHoppeetal.2022, author = {Hoang, Yen and Gryzik, Stefanie and Hoppe, Ines and Rybak, Alexander and Sch{\"a}dlich, Martin and Kadner, Isabelle and Walther, Dirk and Vera, Julio and Radbruch, Andreas and Groth, Detlef and Baumgart, Sabine and Baumgrass, Ria}, title = {PRI: Re-analysis of a public mass cytometry dataset reveals patterns of effective tumor treatments}, series = {Frontiers in immunology}, volume = {13}, journal = {Frontiers in immunology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.849329}, pages = {9}, year = {2022}, abstract = {Recently, mass cytometry has enabled quantification of up to 50 parameters for millions of cells per sample. It remains a challenge to analyze such high-dimensional data to exploit the richness of the inherent information, even though many valuable new analysis tools have already been developed. We propose a novel algorithm "pattern recognition of immune cells (PRI)" to tackle these high-dimensional protein combinations in the data. PRI is a tool for the analysis and visualization of cytometry data based on a three or more-parametric binning approach, feature engineering of bin properties of multivariate cell data, and a pseudo-multiparametric visualization. Using a publicly available mass cytometry dataset, we proved that reproducible feature engineering and intuitive understanding of the generated bin plots are helpful hallmarks for re-analysis with PRI. In the CD4(+)T cell population analyzed, PRI revealed two bin-plot patterns (CD90/CD44/CD86 and CD90/CD44/CD27) and 20 bin plot features for threshold-independent classification of mice concerning ineffective and effective tumor treatment. In addition, PRI mapped cell subsets regarding co-expression of the proliferation marker Ki67 with two major transcription factors and further delineated a specific Th1 cell subset. All these results demonstrate the added insights that can be obtained using the non-cluster-based tool PRI for re-analyses of high-dimensional cytometric data.}, language = {en} } @article{TianQinZhangetal.2022, author = {Tian, Fang and Qin, Wen and Zhang, Ran and Herzschuh, Ulrike and Ni, Jian and Zhang, Chengjun and Mischke, Steffen and Cao, Xianyong}, title = {Palynological evidence for the temporal stability of the plant community in the Yellow River Source Area over the last 7,400 years}, series = {Vegetation history and archaeobotany}, volume = {31}, journal = {Vegetation history and archaeobotany}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0939-6314}, doi = {10.1007/s00334-022-00870-5}, pages = {549 -- 558}, year = {2022}, abstract = {The terrestrial ecosystem in the Yellow River Source Area (YRSA) is sensitive to climate change and human impacts, although past vegetation change and the degree of human disturbance are still largely unknown. A 170-cm-long sediment core covering the last 7,400 years was collected from Lake Xingxinghai (XXH) in the YRSA. Pollen, together with a series of other environmental proxies (including grain size, total organic carbon (TOC) and carbonate content), were analysed to explore past vegetation and environmental changes for the YRSA. Dominant and common pollen components-Cyperaceae, Poaceae, Artemisia, Chenopodiaceae and Asteraceae-are stable throughout the last 7,400 years. Slight vegetation change is inferred from an increasing trend of Cyperaceae and decreasing trend of Poaceae, suggesting that alpine steppe was replaced by alpine meadow at ca. 3.5 ka cal bp. The vegetation transformation indicates a generally wetter climate during the middle and late Holocene, which is supported by increased amounts of TOC and Pediastrum (representing high water-level) and is consistent with previous past climate records from the north-eastern Tibetan Plateau. Our results find no evidence of human impact on the regional vegetation surrounding XXH, hence we conclude the vegetation change likely reflects the regional climate signal.}, language = {en} } @article{VatovaRubinGrossartetal.2022, author = {Vatova, Mariyana and Rubin, Conrad and Grossart, Hans-Peter and Goncalves, Susana C. and Schmidt, Susanne I. and Jarić, Ivan}, title = {Aquatic fungi: largely neglected targets for conservation}, series = {Frontiers in ecology and the environment}, volume = {20}, journal = {Frontiers in ecology and the environment}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1540-9295}, doi = {10.1002/fee.2495}, pages = {207 -- 209}, year = {2022}, language = {en} } @article{GluecklerGengGrimmetal.2022, author = {Gl{\"u}ckler, Ramesh and Geng, Rongwei and Grimm, Lennart and Baisheva, Izabella and Herzschuh, Ulrike and Stoof-Leichsenring, Kathleen R. and Kruse, Stefan and Andreev, Andrej Aleksandrovic and Pestryakova, Luidmila and Dietze, Elisabeth}, title = {Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies}, series = {Frontiers in Ecology and Evolution}, volume = {10}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2022.962906}, pages = {19}, year = {2022}, abstract = {Wildfires play an essential role in the ecology of boreal forests. In eastern Siberia, fire activity has been increasing in recent years, challenging the livelihoods of local communities. Intensifying fire regimes also increase disturbance pressure on the boreal forests, which currently protect the permafrost beneath from accelerated degradation. However, long-term relationships between changes in fire regime and forest structure remain largely unknown. We assess past fire-vegetation feedbacks using sedimentary proxy records from Lake Satagay, Central Yakutia, Siberia, covering the past c. 10,800 years. Results from macroscopic and microscopic charcoal analyses indicate high amounts of burnt biomass during the Early Holocene, and that the present-day, low-severity surface fire regime has been in place since c. 4,500 years before present. A pollen-based quantitative reconstruction of vegetation cover and a terrestrial plant record based on sedimentary ancient DNA metabarcoding suggest a pronounced shift in forest structure toward the Late Holocene. Whereas the Early Holocene was characterized by postglacial open larch-birch woodlands, forest structure changed toward the modern, mixed larch-dominated closed-canopy forest during the Mid-Holocene. We propose a potential relationship between open woodlands and high amounts of burnt biomass, as well as a mediating effect of dense larch forest on the climate-driven intensification of fire regimes. Considering the anticipated increase in forest disturbances (droughts, insect invasions, and wildfires), higher tree mortality may force the modern state of the forest to shift toward an open woodland state comparable to the Early Holocene. Such a shift in forest structure may result in a positive feedback on currently intensifying wildfires. These new long-term data improve our understanding of millennial-scale fire regime changes and their relationships to changes of vegetation in Central Yakutia, where the local population is already being confronted with intensifying wildfire seasons.}, language = {en} } @article{WelkeSperberBergmannetal.2022, author = {Welke, Robert-William and Sperber, Hannah Sabeth and Bergmann, Ronny and Koikkarah, Amit and Menke, Laura and Sieben, Christian and Kr{\"u}ger, Detlev H. and Chiantia, Salvatore and Herrmann, Andreas and Schwarzer, Roland}, title = {Characterization of hantavirus N protein intracellular dynamics and localization}, series = {Viruses}, volume = {14}, journal = {Viruses}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {1999-4915}, doi = {10.3390/v14030457}, pages = {14}, year = {2022}, abstract = {Hantaviruses are enveloped viruses that possess a tri-segmented, negative-sense RNA genome. The viral S-segment encodes the multifunctional nucleocapsid protein (N), which is involved in genome packaging, intracellular protein transport, immunoregulation, and several other crucial processes during hantavirus infection. In this study, we generated fluorescently tagged N protein constructs derived from Puumalavirus (PUUV), the dominant hantavirus species in Central, Northern, and Eastern Europe. We comprehensively characterized this protein in the rodent cell line CHO-K1, monitoring the dynamics of N protein complex formation and investigating co-localization with host proteins as well as the viral glycoproteins Gc and Gn. We observed formation of large, fibrillar PUUV N protein aggregates, rapidly coalescing from early punctate and spike-like assemblies. Moreover, we found significant spatial correlation of N with vimentin, actin, and P-bodies but not with microtubules. N constructs also co-localized with Gn and Gc albeit not as strongly as the glycoproteins associated with each other. Finally, we assessed oligomerization of N constructs, observing efficient and concentration-dependent multimerization, with complexes comprising more than 10 individual proteins.}, language = {en} } @article{KamaliJahanbakhshiDogaruetal.2022, author = {Kamali, Bahareh and Jahanbakhshi, Farshid and Dogaru, Diana and Dietrich, J{\"o}rg and Nendel, Claas and AghaKouchak, Amir}, title = {Probabilistic modeling of crop-yield loss risk under drought: a spatial showcase for sub-Saharan Africa}, series = {Environmental research letters}, volume = {17}, journal = {Environmental research letters}, number = {2}, publisher = {IOP Publishing}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac4ec1}, pages = {15}, year = {2022}, abstract = {Assessing the risk of yield loss in African drought-affected regions is key to identify feasible solutions for stable crop production. Recent studies have demonstrated that Copula-based probabilistic methods are well suited for such assessment owing to reasonably inferring important properties in terms of exceedance probability and joint dependence of different characterization. However, insufficient attention has been given to quantifying the probability of yield loss and determining the contribution of climatic factors. This study applies the Copula theory to describe the dependence between drought and crop yield anomalies for rainfed maize, millet, and sorghum crops in sub-Saharan Africa (SSA). The environmental policy integrated climate model, calibrated with Food and Agriculture Organization country-level yield data, was used to simulate yields across SSA (1980-2012). The results showed that the severity of yield loss due to drought had a higher magnitude than the severity of drought itself. Sensitivity analysis to identify factors contributing to drought and high-temperature stresses for all crops showed that the amount of precipitation during vegetation and grain filling was the main driver of crop yield loss, and the effect of temperature was stronger for sorghum than for maize and millet. The results demonstrate the added value of probabilistic methods for drought-impact assessment. For future studies, we recommend looking into factors influencing drought and high-temperature stresses as individual/concurrent climatic extremes.}, language = {en} } @article{KamaliLoriteWebberetal.2022, author = {Kamali, Bahareh and Lorite, Ignacio J. and Webber, Heidi A. and Rezaei, Ehsan Eyshi and Gabaldon-Leal, Clara and Nendel, Claas and Siebert, Stefan and Ramirez-Cuesta, Juan Miguel and Ewert, Frank and Ojeda, Jonathan J.}, title = {Uncertainty in climate change impact studies for irrigated maize cropping systems in southern Spain}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited,}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-08056-9}, pages = {13}, year = {2022}, abstract = {This study investigates the main drivers of uncertainties in simulated irrigated maize yield under historical conditions as well as scenarios of increased temperatures and altered irrigation water availability. Using APSIM, MONICA, and SIMPLACE crop models, we quantified the relative contributions of three irrigation water allocation strategies, three sowing dates, and three maize cultivars to the uncertainty in simulated yields. The water allocation strategies were derived from historical records of farmer's allocation patterns in drip-irrigation scheme of the Genil-Cabra region, Spain (2014-2017). By considering combinations of allocation strategies, the adjusted R-2 values (showing the degree of agreement between simulated and observed yields) increased by 29\% compared to unrealistic assumptions of considering only near optimal or deficit irrigation scheduling. The factor decomposition analysis based on historic climate showed that irrigation strategies was the main driver of uncertainty in simulated yields (66\%). However, under temperature increase scenarios, the contribution of crop model and cultivar choice to uncertainty in simulated yields were as important as irrigation strategy. This was partially due to different model structure in processes related to the temperature responses. Our study calls for including information on irrigation strategies conducted by farmers to reduce the uncertainty in simulated yields at field scale.}, language = {en} } @article{TolomeevDubovskayaKirillinetal.2022, author = {Tolomeev, Aleksandr P. and Dubovskaya, Olga P. and Kirillin, Georgiy and Buseva, Zhanna and Kolmakova, Olesya and Grossart, Hans-Peter and Tang, Kam W. and Gladyšev, Michail I.}, title = {Degradation of dead cladoceran zooplankton and their contribution to organic carbon cycling in stratified lakes}, series = {Journal of plankton research}, volume = {44}, journal = {Journal of plankton research}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbac023}, pages = {386 -- 400}, year = {2022}, abstract = {The contribution of dead zooplankton biomass to carbon cycle in aquatic ecosystems is practically unknown. Using abundance data of zooplankton in water column and dead zooplankton in sediment traps in Lake Stechlin, an ecological-mathematical model was developed to simulate the abundance and sinking of zooplankton carcasses and predict the related release of labile organic matter (LOM) into the water column. We found species-specific differences in mortality rate of the dominant zooplankton: Daphnia cucullata, Bosmina coregoni and Diaphanosoma brachyurum (0.008, 0.129 and 0.020 day(-1), respectively) and differences in their carcass sinking velocities in metalimnion (and hypolimnion): 2.1 (7.64), 14.0 (19.5) and 1.1 (5.9) m day(-1), respectively. Our model simulating formation and degradation processes of dead zooplankton predicted a bimodal distribution of the released LOM: epilimnic and metalimnic peaks of comparable intensity, ca. 1 mg DW m(-3) day(-1). Maximum degradation of carcasses up to ca. 1.7 mg DW m(-3) day(-1) occurred in the density gradient zone of metalimnion. LOM released from zooplankton carcasses into the surrounding water may stimulate microbial activity and facilitate microbial degradation of more refractory organic matter; therefore, dead zooplankton are expected to be an integral part of water column carbon source/sink dynamics in stratified lakes.}, language = {en} }