@phdthesis{Breitenbach2009, author = {Breitenbach, Sebastian Franz Martin}, title = {Changes in monsoonal precipitation and atmospheric circulation during the Holocene reconstructed from stalagmites from Northeastern India}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-37807}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Recent years witnessed a vast advent of stalagmites as palaeoclimate archives. The multitude of geochemical and physical proxies and a promise of a precise and accurate age model greatly appeal to palaeoclimatologists. Although substantial progress was made in speleothem-based palaeoclimate research and despite high-resolution records from low-latitudinal regions, proving that palaeo-environmental changes can be archived on sub-annual to millennial time scales our comprehension of climate dynamics is still fragmentary. This is in particular true for the summer monsoon system on the Indian subcontinent. The Indian summer monsoon (ISM) is an integral part of the intertropical convergence zone (ITCZ). As this rainfall belt migrates northward during boreal summer, it brings monsoonal rainfall. ISM strength depends however on a variety of factors, including snow cover in Central Asia and oceanic conditions in the Indic and Pacific. Presently, many of the factors influencing the ISM are known, though their exact forcing mechanism and mutual relations remain ambiguous. Attempts to make an accurate prediction of rainfall intensity and frequency and drought recurrence, which is extremely important for South Asian countries, resemble a puzzle game; all interaction need to fall into the right place to obtain a complete picture. My thesis aims to create a faithful picture of climate change in India, covering the last 11,000 ka. NE India represents a key region for the Bay of Bengal (BoB) branch of the ISM, as it is here where the monsoon splits into a northwestward and a northeastward directed arm. The Meghalaya Plateau is the first barrier for northward moving air masses and receives excessive summer rainfall, while the winter season is very dry. The proximity of Meghalaya to the Tibetan Plateau on the one hand and the BoB on the other hand make the study area a key location for investigating the interaction between different forcings that governs the ISM. A basis for the interpretation of palaeoclimate records, and a first important outcome of my thesis is a conceptual model which explains the observed pattern of seasonal changes in stable isotopes (d18O and d2H) in rainfall. I show that although in tropical and subtropical regions the amount effect is commonly called to explain strongly depleted isotope values during enhanced rainfall, alone it cannot account for observed rainwater isotope variability in Meghalaya. Monitoring of rainwater isotopes shows no expected negative correlation between precipitation amount and d18O of rainfall. In turn I find evidence that the runoff from high elevations carries an inherited isotopic signature into the BoB, where during the ISM season the freshwater builds a strongly depleted plume on top of the marine water. The vapor originating from this plume is likely to memorize' and transmit further very negative d18O values. The lack of data does not allow for quantication of this plume effect' on isotopes in rainfall over Meghalaya but I suggest that it varies on seasonal to millennial timescales, depending on the runoff amount and source characteristics. The focal point of my thesis is the extraction of climatic signals archived in stalagmites from NE India. High uranium concentration in the stalagmites ensured excellent age control required for successful high-resolution climate reconstructions. Stable isotope (d18O and d13C) and grey-scale data allow unprecedented insights into millennial to seasonal dynamics of the summer and winter monsoon in NE India. ISM strength (i. e. rainfall amount) is recorded in changes in d18Ostalagmites. The d13C signal, reflecting drip rate changes, renders a powerful proxy for dry season conditions, and shows similarities to temperature-related changes on the Tibetan Plateau. A sub-annual grey-scale profile supports a concept of lower drip rate and slower stalagmite growth during dry conditions. During the Holocene, ISM followed a millennial-scale decrease of insolation, with decadal to centennial failures resulting from atmospheric changes. The period of maximum rainfall and enhanced seasonality corresponds to the Holocene Thermal Optimum observed in Europe. After a phase of rather stable conditions, 4.5 kyr ago, the strengthening ENSO system dominated the ISM. Strong El Nino events weakened the ISM, especially when in concert with positive Indian Ocean dipole events. The strongest droughts of the last 11 kyr are recorded during the past 2 kyr. Using the advantage of a well-dated stalagmite record at hand I tested the application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to detect sub-annual to sub-decadal changes in element concentrations in stalagmites. The development of a large ablation cell allows for ablating sample slabs of up to 22 cm total length. Each analyzed element is a potential proxy for different climatic parameters. Combining my previous results with the LAICP- MS-generated data shows that element concentration depends not only on rainfall amount and associated leaching from the soil. Additional factors, like biological activity and hydrogeochemical conditions in the soil and vadose zone can eventually affect the element content in drip water and in stalagmites. I present a theoretical conceptual model for my study site to explain how climatic signals can be transmitted and archived in stalagmite carbonate. Further, I establish a first 1500 year long element record, reconstructing rainfall variability. Additionally, I hypothesize that volcanic eruptions, producing large amounts of sulfuric acid, can influence soil acidity and hence element mobilization.}, language = {en} } @phdthesis{Petrow2009, author = {Petrow, Theresia}, title = {Floods in Germany : analyses of trends, seasonality and circulation patterns}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-37392}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Flood hazard estimations are conducted with a variety of methods. These include flood frequency analysis (FFA), hydrologic and hydraulic modelling, probable maximum discharges as well as climate scenarios. However, most of these methods assume stationarity of the used time series, i.e., the series must not exhibit trends. Against the background of climate change and proven significant trends in atmospheric circulation patterns, it is questionable whether these changes are also reflected in the discharge data. The aim of this PhD thesis is therefore to clarify, in a spatially-explicit manner, whether the available discharge data derived from selected German catchments exhibit trends. Concerning the flood hazard, the suitability of the currently used stationary FFA approaches is evaluated for the discharge data. Moreover, dynamics in atmospheric circulation patterns are studied and the link between trends in these patterns and discharges is investigated. To tackle this research topic, a number of different analyses are conducted. The first part of the PhD thesis comprises the study and trend test of 145 discharge series from catchments, which cover most of Germany for the period 1951-2002. The seasonality and trend pattern of eight flood indicators, such as maximum series and peak-over-threshold series, are analyzed in a spatially-explicit manner. Analyses are performed on different spatial scales: at the local scale, through gauge-specific analyses, and on the catchment-wide and basin scales. Besides the analysis of discharge series, data on atmospheric circulation patterns (CP) are an important source of information, upon which conclusions about the flood hazard can be drawn. The analyses of these circulation patterns (after Hess und Brezowsky) and the study of the link to peak discharges form the second part of the thesis. For this, daily data on the dominant CP across Europe are studied; these are represented by different indicators, which are tested for trend. Moreover, analyses are performed to extract flood triggering circulation patterns and to estimate the flood potential of CPs. Correlations between discharge series and CP indicators are calculated to assess a possible link between them. For this research topic, data from 122 meso-scale catchments in the period 1951-2002 are used. In a third part, the Mulde catchment, a mesoscale sub-catchment of the Elbe basin, is studied in more detail. Fifteen discharge series of different lengths in the period 1910-2002 are available for the seasonally differentiated analysis of the flood potential of CPs and flood influencing landscape parameters. For trend tests of discharge and CP data, different methods are used. The Mann-Kendall test is applied with a significance level of 10\%, ensuring statistically sound results. Besides the test of the entire series for trend, multiple time-varying trend tests are performed with the help of a resampling approach in order to better differentiate short-term fluctuations from long-lasting trends. Calculations of the field significance complement the flood hazard assessment for the studied regions. The present thesis shows that the flood hazard is indeed significantly increasing for selected regions in Germany during the winter season. Especially affected are the middle mountain ranges in Central Germany. This increase of the flood hazard is attributed to a longer persistence of selected CPs during winter. Increasing trends in summer floods are found in the Rhine and Danube catchments, decreasing trends in the Elbe and Weser catchments. Finally, a significant trend towards a reduced diversity of CPs is found causing fewer patterns with longer persistence to dominate the weather over Europe. The detailed study of the Mulde catchment reveals a flood regime with frequent low winter floods and fewer summer floods, which bear, however, the potential of becoming extreme. Based on the results, the use of instationary approaches for flood hazard estimation is recommended in order to account for the detected trends in many of the series. Through this methodology it is possible to directly consider temporal changes in flood series, which in turn reduces the possibility of large under- or overestimations of the extreme discharges, respectively.}, language = {en} } @phdthesis{Aichner2009, author = {Aichner, Bernhard}, title = {Aquatic macrophyte-derived biomarkers as palaeolimnological proxies on the Tibetan Plateau}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42095}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {The Tibetan Plateau is the largest elevated landmass in the world and profoundly influences atmospheric circulation patterns such as the Asian monsoon system. Therefore this area has been increasingly in focus of palaeoenvironmental studies. This thesis evaluates the applicability of organic biomarkers for palaeolimnological purposes on the Tibetan Plateau with a focus on aquatic macrophyte-derived biomarkers. Submerged aquatic macrophytes have to be considered to significantly influence the sediment organic matter due to their high abundance in many Tibetan lakes. They can show highly 13C-enriched biomass because of their carbon metabolism and it is therefore crucial for the interpretation of δ13C values in sediment cores to understand to which extent aquatic macrophytes contribute to the isotopic signal of the sediments in Tibetan lakes and in which way variations can be explained in a palaeolimnological context. Additionally, the high abundance of macrophytes makes them interesting as potential recorders of lake water δD. Hydrogen isotope analysis of biomarkers is a rapidly evolving field to reconstruct past hydrological conditions and therefore of special relevance on the Tibetan Plateau due to the direct linkage between variations of monsoon intensity and changes in regional precipitation / evaporation balances. A set of surface sediment and aquatic macrophyte samples from the central and eastern Tibetan Plateau was analysed for composition as well as carbon and hydrogen isotopes of n-alkanes. It was shown how variable δ13C values of bulk organic matter and leaf lipids can be in submerged macrophytes even of a single species and how strongly these parameters are affected by them in corresponding sediments. The estimated contribution of the macrophytes by means of a binary isotopic model was calculated to be up to 60\% (mean: 40\%) to total organic carbon and up to 100\% (mean: 66\%) to mid-chain n-alkanes. Hydrogen isotopes of n-alkanes turned out to record δD of meteoric water of the summer precipitation. The apparent enrichment factor between water and n-alkanes was in range of previously reported ones (≈-130 per mille) at the most humid sites, but smaller (average: -86 per mille) at sites with a negative moisture budget. This indicates an influence of evaporation and evapotranspiration on δD of source water for aquatic and terrestrial plants. The offset between δD of mid- and long-chain n-alkanes was close to zero in most of the samples, suggesting that lake water as well as soil and leaf water are affected to a similar extent by those effects. To apply biomarkers in a palaeolimnological context, the aliphatic biomarker fraction of a sediment core from Lake Koucha (34.0° N; 97.2° E; eastern Tibetan Plateau) was analysed for concentrations, δ13C and δD values of compounds. Before ca. 8 cal ka BP, the lake was dominated by aquatic macrophyte-derived mid-chain n-alkanes, while after 6 cal ka BP high concentrations of a C20 highly branched isoprenoid compound indicate a predominance of phytoplankton. Those two principally different states of the lake were linked by a transition period with high abundances of microbial biomarkers. δ13C values were relatively constant for long-chain n-alkanes, while mid-chain n-alkanes showed variations between -23.5 to -12.6 per mille. Highest values were observed for the assumed period of maximum macrophyte growth during the late glacial and for the phytoplankton maximum during the middle and late Holocene. Therefore, the enriched values were interpreted to be caused by carbon limitation which in turn was induced by high macrophyte and primary productivity, respectively. Hydrogen isotope signatures of mid-chain n-alkanes have been shown to be able to track a previously deduced episode of reduced moisture availability between ca. 10 and 7 cal ka BP, indicated by a 20 per mille shift towards higher δD values. Indications for cooler episodes at 6.0, 3.1 and 1.8 cal ka BP were gained from drops of biomarker concentrations, especially microbial-derived hopanoids, and from coincidental shifts towards lower δ13C values. Those episodes correspond well with cool events reported from other locations on the Tibetan Plateau as well as in the Northern Hemisphere. To conclude, the study of recent sediments and plants improved the understanding of factors affecting the composition and isotopic signatures of aliphatic biomarkers in sediments. Concentrations and isotopic signatures of the biomarkers in Lake Koucha could be interpreted in a palaeolimnological context and contribute to the knowledge about the history of the lake. Aquatic macrophyte-derived mid-chain n-alkanes were especially useful, due to their high abundance in many Tibetan Lakes and their ability to record major changes of lake productivity and palaeo-hydrological conditions. Therefore, they have the potential to contribute to a fuller understanding of past climate variability in this key region for atmospheric circulation systems.}, language = {en} } @phdthesis{Hiller2009, author = {Hiller, Matthias}, title = {Sample preparation of membrane proteins suitable for solid-state MAS NMR and development of assignment strategies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-37246}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Although the basic structure of biological membranes is provided by the lipid bilayer, most of the specific functions are carried out by membrane proteins (MPs) such as channels, ion-pumps and receptors. Additionally, it is known, that mutations in MPs are directly or indirectly involved in many diseases. Thus, structure determination of MPs is of major interest not only in structural biology but also in pharmacology, especially for drug development. Advances in structural biology of membrane proteins (MPs) have been strongly supported by the success of three leading techniques: X-ray crystallography, electron microscopy and solution NMR spectroscopy. However, X-ray crystallography and electron microscopy, require highly diffracting 3D or 2D crystals, respectively. Today, structure determination of non-crystalline solid protein preparations has been made possible through rapid progress of solid-state MAS NMR methodology for biological systems. Castellani et. al. solved and refined the first structure of a microcrystalline protein using only solid-state MAS NMR spectroscopy. These successful application open up perspectives to access systems that are difficult to crystallise or that form large heterogeneous complexes and insoluble aggregates, for example ligands bound to a MP-receptor, protein fibrils and heterogeneous proteins aggregates. Solid-state MAS NMR spectroscopy is in principle well suited to study MP at atomic resolution. In this thesis, different types of MP preparations were tested for their suitability to be studied by solid-state MAS NMR. Proteoliposomes, poorly diffracting 2D crystals and a PEG precipitate of the outer membrane protein G (OmpG) were prepared as a model system for large MPs. Results from this work, combined with data found in the literature, show that highly diffracting crystalline material is not a prerequirement for structural analysis of MPs by solid-state MAS NMR. Instead, it is possible to use non-diffracting 3D crystals, MP precipitates, poorly diffracting 2D crystals and proteoliposomes. For the latter two types of preparations, the MP is reconstituted into a lipid bilayer, which thus allows the structural investigation in a quasi-native environment. In addition, to prepare a MP sample for solid-state MAS NMR it is possible to use screening methods, that are well established for 3D and 2D crystallisation of MPs. Hopefully, these findings will open a fourth method for structural investigation of MP. The prerequisite for structural studies by NMR in general, and the most time consuming step, is always the assignment of resonances to specific nuclei within the protein. Since the last few years an ever-increasing number of assignments from solid-state MAS NMR of uniformly carbon and nitrogen labelled samples is being reported, mostly for small proteins of up to around 150 amino acids in length. However, the complexity of the spectra increases with increasing molecular weight of the protein. Thus the conventional assignment strategies developed for small proteins do not yield a sufficiently high degree of assignment for the large MP OmpG (281 amino acids). Therefore, a new assignment strategy to find starting points for large MPs was devised. The assignment procedure is based on a sample with [2,3-13C, 15N]-labelled Tyr and Phe and uniformly labelled alanine and glycine. This labelling pattern reduces the spectral overlap as well as the number of assignment possibilities. In order to extend the assignment, four other specifically labelled OmpG samples were used. The assignment procedure starts with the identification of the spin systems of each labelled amino acid using 2D 13C-13C and 3D NCACX correlation experiments. In a second step, 2D and 3D NCOCX type experiments are used for the sequential assignment of the observed resonances to specific nuclei in the OmpG amino acid sequence. Additionally, it was shown in this work, that biosynthetically site directed labelled samples, which are normally used to observe long-range correlations, were helpful to confirm the assignment. Another approach to find assignment starting points in large protein systems, is the use of spectroscopic filtering techniques. A filtering block that selects methyl resonances was used to find further assignment starting points for OmpG. Combining all these techniques, it was possible to assign nearly 50 \% of the observed signals to the OmpG sequence. Using this information, a prediction of the secondary structure elements of OmpG was possible. Most of the calculated motifs were in good aggreement with the crystal structures of OmpG. The approaches presented here should be applicable to a wide variety of MPs and MP-complexes and should thus open a new avenue for the structural biology of MPs.}, language = {en} } @misc{DimigenValsecchiSommeretal.2009, author = {Dimigen, Olaf and Valsecchi, Matteo and Sommer, Werner and Kliegl, Reinhold}, title = {Human Microsaccade-Related Visual Brain Responses}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56923}, year = {2009}, abstract = {Microsaccades are very small, involuntary flicks in eye position that occur on average once or twice per second during attempted visual fixation. Microsaccades give rise to EMG eye muscle spikes that can distort the spectrum of the scalp EEG and mimic increases in gamma band power. Here we demonstrate that microsaccades are also accompanied by genuine and sizeable cortical activity, manifested in the EEG. In three experiments, high-resolution eye movements were corecorded with the EEG: during sustained fixation of checkerboard and face stimuli and in a standard visual oddball task that required the counting of target stimuli. Results show that microsaccades as small as 0.15° generate a field potential over occipital cortex and midcentral scalp sites 100 -140 ms after movement onset, which resembles the visual lambda response evoked by larger voluntary saccades. This challenges the standard assumption of human brain imaging studies that saccade-related brain activity is precluded by fixation, even when fully complied with. Instead, additional cortical potentials from microsaccades were present in 86\% of the oddball task trials and of similar amplitude as the visual response to stimulus onset. Furthermore, microsaccade probability varied systematically according to the proportion of target stimuli in the oddball task, causing modulations of late stimulus-locked event-related potential (ERP) components. Microsaccades present an unrecognized source of visual brain signal that is of interest for vision research and may have influenced the data of many ERP and neuroimaging studies.}, language = {en} } @misc{DambacherRolfsGoellneretal.2009, author = {Dambacher, Michael and Rolfs, Martin and G{\"o}llner, Kristin and Kliegl, Reinhold and Jacobs, Arthur M.}, title = {Event-related potentials reveal rapid verification of predicted visual input}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44953}, year = {2009}, abstract = {Human information processing depends critically on continuous predictions about upcoming events, but the temporal convergence of expectancy-based top-down and input-driven bottom-up streams is poorly understood. We show that, during reading, event-related potentials differ between exposure to highly predictable and unpredictable words no later than 90 ms after visual input. This result suggests an extremely rapid comparison of expected and incoming visual information and gives an upper temporal bound for theories of top-down and bottom-up interactions in object recognition.}, language = {en} } @misc{KlieglMassonRichter2009, author = {Kliegl, Reinhold and Masson, Michael E. J. and Richter, Eike M.}, title = {A linear mixed model analysis of masked repetition priming}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57073}, year = {2009}, abstract = {We examined individual differences in masked repetition priming by re-analyzing item-level response-time (RT) data from three experiments. Using a linear mixed model (LMM) with subjects and items specified as crossed random factors, the originally reported priming and word-frequency effects were recovered. In the same LMM, we estimated parameters describing the distributions of these effects across subjects. Subjects' frequency and priming effects correlated positively with each other and negatively with mean RT. These correlation estimates, however, emerged only with a reciprocal transformation of RT (i.e., -1/RT), justified on the basis of distributional analyses. Different correlations, some with opposite sign, were obtained (1) for untransformed or logarithmic RTs or (2) when correlations were computed using within-subject analyses. We discuss the relevance of the new results for accounts of masked priming, implications of applying RT transformations, and the use of LMMs as a tool for the joint analysis of experimental effects and associated individual differences.}, language = {en} } @phdthesis{Wotschack2009, author = {Wotschack, Christiane}, title = {Eye movements in reading strategies : how reading strategies modulate effects of distributed processing and oculomotor control}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-021-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-36846}, school = {Universit{\"a}t Potsdam}, pages = {213}, year = {2009}, abstract = {Throughout its empirical research history eye movement research has always been aware of the differences in reading behavior induced by individual differences and task demands. This work introduces a novel comprehensive concept of reading strategy, comprising individual differences in reading style and reading skill as well as reader goals. In a series of sentence reading experiments recording eye movements, the influence of reading strategies on reader- and word-level effects assuming distributed processing has been investigated. Results provide evidence for strategic, top-down influences on eye movement control that extend our understanding of eye guidance in reading.}, language = {en} } @misc{ValsecchiDimigenKliegletal.2009, author = {Valsecchi, Matteo and Dimigen, Olaf and Kliegl, Reinhold and Sommer, Werner and Turatto, Massimo}, title = {Microsaccadic Inhibition and P300 Enhancement in a Visual Oddball Task}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57170}, year = {2009}, abstract = {It has recently been demonstrated that the presentation of a rare target in a visual oddball paradigm induces a prolonged inhibition of microsaccades. In the field of electrophysiology, the amplitude of the P300 component in event-related potentials (ERP) has been shown to be sensitive to the stimulus category (target vs. non target) of the eliciting stimulus, its overall probability, and the preceding stimulus sequence. In the present study we further specify the functional underpinnings of the prolonged microsaccadic inhibition in the visual oddball task, showing that the stimulus category, the frequency of a stimulus and the preceding stimulus sequence influence microsaccade rate. Furthermore, by co-recording ERPs and eye-movements, we were able to demonstrate that, despite being largely sensitive to the same experimental manipulation, the amplitude of P300 and the microsaccadic inhibition predict each other very weakly, and thus constitute two independent measures of the brain's response to rare targets in the visual oddball paradigm.}, language = {en} } @misc{KlieglRolfsLaubrocketal.2009, author = {Kliegl, Reinhold and Rolfs, Martin and Laubrock, Jochen and Engbert, Ralf}, title = {Microsaccadic Modulation of Response Times in Spatial Attention Tasks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57098}, year = {2009}, abstract = {Covert shifts of attention are usually reflected in RT differences between responses to valid and invalid cues in the Posner spatial attention task. Such inferences about covert shifts of attention do not control for microsaccades in the cue target interval. We analyzed the effects of microsaccade orientation on RTs in four conditions, crossing peripheral visual and auditory cues with peripheral visual and auditory discrimination targets. Reaction time was generally faster on trials without microsaccades in the cue-target interval. If microsaccades occurred, the target-location congruency of the last microsaccade in the cuetarget interval interacted in a complex way with cue validity. For valid visual cues, irrespective of whether the discrimination target was visual or auditory, target-congruent microsaccades delayed RT. For invalid cues, target-incongruent microsaccades facilitated RTs for visual target discrimination, but delayed RT for auditory target discrimination. No reliable effects on RT were associated with auditory cues or with the first microsaccade in the cue-target interval. We discuss theoretical implications on the relation about spatial attention and oculomotor processes.}, language = {en} }