@phdthesis{Sharma2024, author = {Sharma, Shubham}, title = {Integrated approaches to earthquake forecasting}, doi = {10.25932/publishup-63612}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-636125}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 76}, year = {2024}, abstract = {A comprehensive study on seismic hazard and earthquake triggering is crucial for effective mitigation of earthquake risks. The destructive nature of earthquakes motivates researchers to work on forecasting despite the apparent randomness of the earthquake occurrences. Understanding their underlying mechanisms and patterns is vital, given their potential for widespread devastation and loss of life. This thesis combines methodologies, including Coulomb stress calculations and aftershock analysis, to shed light on earthquake complexities, ultimately enhancing seismic hazard assessment. The Coulomb failure stress (CFS) criterion is widely used to predict the spatial distributions of aftershocks following large earthquakes. However, uncertainties associated with CFS calculations arise from non-unique slip inversions and unknown fault networks, particularly due to the choice of the assumed aftershocks (receiver) mechanisms. Recent studies have proposed alternative stress quantities and deep neural network approaches as superior to CFS with predefined receiver mechanisms. To challenge these propositions, I utilized 289 slip inversions from the SRCMOD database to calculate more realistic CFS values for a layered-half space and variable receiver mechanisms. The analysis also investigates the impact of magnitude cutoff, grid size variation, and aftershock duration on the ranking of stress metrics using receiver operating characteristic (ROC) analysis. Results reveal the performance of stress metrics significantly improves after accounting for receiver variability and for larger aftershocks and shorter time periods, without altering the relative ranking of the different stress metrics. To corroborate Coulomb stress calculations with the findings of earthquake source studies in more detail, I studied the source properties of the 2005 Kashmir earthquake and its aftershocks, aiming to unravel the seismotectonics of the NW Himalayan syntaxis. I simultaneously relocated the mainshock and its largest aftershocks using phase data, followed by a comprehensive analysis of Coulomb stress changes on the aftershock planes. By computing the Coulomb failure stress changes on the aftershock faults, I found that all large aftershocks lie in regions of positive stress change, indicating triggering by either co-seismic or post-seismic slip on the mainshock fault. Finally, I investigated the relationship between mainshock-induced stress changes and associated seismicity parameters, in particular those of the frequency-magnitude (Gutenberg-Richter) distribution and the temporal aftershock decay (Omori-Utsu law). For that purpose, I used my global data set of 127 mainshock-aftershock sequences with the calculated Coulomb Stress (ΔCFS) and the alternative receiver-independent stress metrics in the vicinity of the mainshocks and analyzed the aftershocks properties depend on the stress values. Surprisingly, the results show a clear positive correlation between the Gutenberg-Richter b-value and induced stress, contrary to expectations from laboratory experiments. This observation highlights the significance of structural heterogeneity and strength variations in seismicity patterns. Furthermore, the study demonstrates that aftershock productivity increases nonlinearly with stress, while the Omori-Utsu parameters c and p systematically decrease with increasing stress changes. These partly unexpected findings have significant implications for future estimations of aftershock hazard. The findings in this thesis provides valuable insights into earthquake triggering mechanisms by examining the relationship between stress changes and aftershock occurrence. The results contribute to improved understanding of earthquake behavior and can aid in the development of more accurate probabilistic-seismic hazard forecasts and risk reduction strategies.}, language = {en} } @phdthesis{Metzger2023, author = {Metzger, Sabrina}, title = {Neotectonic deformation over space and time as observed by space-based geodesy}, doi = {10.25932/publishup-59922}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-599225}, school = {Universit{\"a}t Potsdam}, pages = {V, 217}, year = {2023}, abstract = {Alfred Wegeners ideas on continental drift were doubted for several decades until the discovery of polarization changes at the Atlantic seafloor and the seismic catalogs imaging oceanic subduction underneath the continental crust (Wadati-Benioff Zone). It took another 20 years until plate motion could be directly observed and quantified by using space geodesy. Since then, it is unthinkable to do neotectonic research without the use of satellite-based methods. Thanks to a tremendeous increase of instrumental observations in space and time over the last decades we significantly increased our knowledge on the complexity of the seismic cycle, that is, the interplay of tectonic stress build up and release. Our classical assumption, earthquakes were the only significant phenomena of strain release previously accumulated in a linear fashion, is outdated. We now know that this concept is actually decorated with a wide range of slow and fast processes such as triggered slip, afterslip, post-seismic and visco-elastic relaxation of the lower crust, dynamic pore-pressure changes in the elastic crust, aseismic creep, slow slip events and seismic swarms. On the basis of eleven peer-reviewed papers studies I here present the diversity of crustal deformation processes. Based on time-series analyses of radar imagery and satellited-based positioning data I quantify tectonic surface deformation and use numerical and analytical models and independent geologic and seismologic data to better understand the underlying crustal processes. The main part of my work focuses on the deformation observed in the Pamir, the Hindu Kush and the Tian Shan that together build the highly active continental collision zone between Northwest-India and Eurasia. Centered around the Sarez earthquake that ruptured the center of the Pamir in 2015 I present diverse examples of crustal deformation phenomena. Driver of the deformation is the Indian indenter, bulldozing into the Pamir, compressing the orogen that then collapses westward into the Tajik depression. A second natural observatory of mine to study tectonic deformation is the oceanic subduction zone in Chile that repeatedly hosts large earthquakes of magnitude 8 and more. These are best to study post-seismic relaxation processes and coupling of large earthquake. My findings nicely illustrate how complex fashion and how much the different deformation phenomena are coupled in space and time. My publications contribute to the awareness that the classical concept of the seismic cycle needs to be revised, which, in turn, has a large influence in the classical, probabilistic seismic hazard assessment that primarily relies on statistically solid recurrence times.}, language = {en} } @phdthesis{RodriguezPiceda2022, author = {Rodriguez Piceda, Constanza}, title = {Thermomechanical state of the southern Central Andes}, doi = {10.25932/publishup-54927}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549275}, school = {Universit{\"a}t Potsdam}, pages = {xx, 228}, year = {2022}, abstract = {The Andes are a ~7000 km long N-S trending mountain range developed along the South American western continental margin. Driven by the subduction of the oceanic Nazca plate beneath the continental South American plate, the formation of the northern and central parts of the orogen is a type case for a non-collisional orogeny. In the southern Central Andes (SCA, 29°S-39°S), the oceanic plate changes the subduction angle between 33°S and 35°S from almost horizontal (< 5° dip) in the north to a steeper angle (~30° dip) in the south. This sector of the Andes also displays remarkable along- and across- strike variations of the tectonic deformation patterns. These include a systematic decrease of topographic elevation, of crustal shortening and foreland and orogenic width, as well as an alternation of the foreland deformation style between thick-skinned and thin-skinned recorded along- and across the strike of the subduction zone. Moreover, the SCA are a very seismically active region. The continental plate is characterized by a relatively shallow seismicity (< 30 km depth) which is mainly focussed at the transition from the orogen to the lowland areas of the foreland and the forearc; in contrast, deeper seismicity occurs below the interiors of the northern foreland. Additionally, frequent seismicity is also recorded in the shallow parts of the oceanic plate and in a sector of the flat slab segment between 31°S and 33°S. The observed spatial heterogeneity in tectonic and seismic deformation in the SCA has been attributed to multiple causes, including variations in sediment thickness, the presence of inherited structures and changes in the subduction angle of the oceanic slab. However, there is no study that inquired the relationship between the long-term rheological configuration of the SCA and the spatial deformation patterns. Moreover, the effects of the density and thickness configuration of the continental plate and of variations in the slab dip angle in the rheological state of the lithosphere have been not thoroughly investigated yet. Since rheology depends on composition, pressure and temperature, a detailed characterization of the compositional, structural and thermal fields of the lithosphere is needed. Therefore, by using multiple geophysical approaches and data sources, I constructed the following 3D models of the SCA lithosphere: (i) a seismically-constrained structural and density model that was tested against the gravity field; (ii) a thermal model integrating the conversion of mantle shear-wave velocities to temperature with steady-state conductive calculations in the uppermost lithosphere (< 50 km depth), validated by temperature and heat-flow measurements; and (iii) a rheological model of the long-term lithospheric strength using as input the previously-generated models. The results of this dissertation indicate that the present-day thermal and rheological fields of the SCA are controlled by different mechanisms at different depths. At shallow depths (< 50 km), the thermomechanical field is modulated by the heterogeneous composition of the continental lithosphere. The overprint of the oceanic slab is detectable where the oceanic plate is shallow (< 85 km depth) and the radiogenic crust is thin, resulting in overall lower temperatures and higher strength compared to regions where the slab is steep and the radiogenic crust is thick. At depths > 50 km, largest temperatures variations occur where the descending slab is detected, which implies that the deep thermal field is mainly affected by the slab dip geometry. The outcomes of this thesis suggests that long-term thermomechanical state of the lithosphere influences the spatial distribution of seismic deformation. Most of the seismicity within the continental plate occurs above the modelled transition from brittle to ductile conditions. Additionally, there is a spatial correlation between the location of these events and the transition from the mechanically strong domains of the forearc and foreland to the weak domain of the orogen. In contrast, seismicity within the oceanic plate is also detected where long-term ductile conditions are expected. I therefore analysed the possible influence of additional mechanisms triggering these earthquakes, including the compaction of sediments in the subduction interface and dehydration reactions in the slab. To that aim, I carried out a qualitative analysis of the state of hydration in the mantle using the ratio between compressional- and shear-wave velocity (vp/vs ratio) from a previous seismic tomography. The results from this analysis indicate that the majority of the seismicity spatially correlates with hydrated areas of the slab and overlying continental mantle, with the exception of the cluster within the flat slab segment. In this region, earthquakes are likely triggered by flexural processes where the slab changes from a flat to a steep subduction angle. First-order variations in the observed tectonic patterns also seem to be influenced by the thermomechanical configuration of the lithosphere. The mechanically strong domains of the forearc and foreland, due to their resistance to deformation, display smaller amounts of shortening than the relatively weak orogenic domain. In addition, the structural and thermomechanical characteristics modelled in this dissertation confirm previous analyses from geodynamic models pointing to the control of the observed heterogeneities in the orogen and foreland deformation style. These characteristics include the lithospheric and crustal thickness, the presence of weak sediments and the variations in gravitational potential energy. Specific conditions occur in the cold and strong northern foreland, which is characterized by active seismicity and thick-skinned structures, although the modelled crustal strength exceeds the typical values of externally-applied tectonic stresses. The additional mechanisms that could explain the strain localization in a region that should resist deformation are: (i) increased tectonic forces coming from the steepening of the slab and (ii) enhanced weakening along inherited structures from pre-Andean deformation events. Finally, the thermomechanical conditions of this sector of the foreland could be a key factor influencing the preservation of the flat subduction angle at these latitudes of the SCA.}, language = {en} } @phdthesis{Petersen2021, author = {Petersen, Gesa Maria}, title = {Source studies of small earthquakes in the AlpArray: CMT inversion, seismo-tectonic analysis and methodological developments}, doi = {10.25932/publishup-52563}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525635}, school = {Universit{\"a}t Potsdam}, pages = {151}, year = {2021}, abstract = {Centroid moment tensor inversion can provide insight into ongoing tectonic processes and active faults. In the Alpine mountains (central Europe), challenges result from low signal-to-noise ratios of earthquakes with small to moderate magnitudes and complex wave propagation effects through the heterogeneous crustal structure of the mountain belt. In this thesis, I make use of the temporary installation of the dense AlpArray seismic network (AASN) to establish a work flow to study seismic source processes and enhance the knowledge of the Alpine seismicity. The cumulative thesis comprises four publications on the topics of large seismic networks, seismic source processes in the Alps, their link to tectonics and stress field, and the inclusion of small magnitude earthquakes into studies of active faults. Dealing with hundreds of stations of the dense AASN requires the automated assessment of data and metadata quality. I developed the open source toolbox AutoStatsQ to perform an automated data quality control. Its first application to the AlpArray seismic network has revealed significant errors of amplitude gains and sensor orientations. A second application of the orientation test to the Turkish KOERI network, based on Rayleigh wave polarization, further illustrated the potential in comparison to a P wave polarization method. Taking advantage of the gain and orientation results of the AASN, I tested different inversion settings and input data types to approach the specific challenges of centroid moment tensor (CMT) inversions in the Alps. A comparative study was carried out to define the best fitting procedures. The application to 4 years of seismicity in the Alps (2016-2019) substantially enhanced the amount of moment tensor solutions in the region. We provide a list of moment tensors solutions down to magnitude Mw 3.1. Spatial patterns of typical focal mechanisms were analyzed in the seismotectonic context, by comparing them to long-term seismicity, historical earthquakes and observations of strain rates. Additionally, we use our MT solutions to investigate stress regimes and orientations along the Alpine chain. Finally, I addressed the challenge of including smaller magnitude events into the study of active faults and source processes. The open-source toolbox Clusty was developed for the clustering of earthquakes based on waveforms recorded across a network of seismic stations. The similarity of waveforms reflects both, the location and the similarity of source mechanisms. Therefore the clustering bears the opportunity to identify earthquakes of similar faulting styles, even when centroid moment tensor inversion is not possible due to low signal-to-noise ratios of surface waves or oversimplified velocity models. The toolbox is described through an application to the Zakynthos 2018 aftershock sequence and I subsequently discuss its potential application to weak earthquakes (Mw<3.1) in the Alps.}, language = {en} } @phdthesis{Liu2020, author = {Liu, Qi}, title = {Influence of CO2 degassing on microbial community distribution and activity in the Hartoušov degassing system, western Eger Rift (Czech Republic)}, doi = {10.25932/publishup-47534}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475341}, school = {Universit{\"a}t Potsdam}, pages = {146}, year = {2020}, abstract = {The Cheb Basin (CZ) is a shallow Neogene intracontinental basin located in the western Eger Rift. The Cheb Basin is characterized by active seismicity and diffuse degassing of mantle-derived CO2 in mofette fields. Within the Cheb Basin, the Hartoušov mofette field shows a daily CO2 flux of 23-97 tons. More than 99\% of CO2 released over an area of 0.35 km2. Seismic active periods have been observed in 2000 and 2014 in the Hartoušov mofette field. Due to the active geodynamic processes, the Cheb Basin is considered to be an ideal region for the continental deep biosphere research focussing on the interaction of biological processes with geological processes. To study the influence of CO2 degassing on microbial community in the surface and subsurface environments, two 3-m shallow drillings and a 108.5-m deep scientific drilling were conducted in 2015 and 2016 respectively. Additionally, the fluid retrieved from the deep drilling borehole was also recovered. The different ecosystems were compared regarding their geochemical properties, microbial abundances, and microbial community structures. The geochemistry of the mofette is characterized by low pH, high TOC, and sulfate contents while the subsurface environment shows a neutral pH, and various TOC and sulfate contents in different lithological settings. Striking differences in the microbial community highlight the substantial impact of elevated CO2 concentrations and high saline groundwater on microbial processes. In general, the microorganisms had low abundance in the deep subsurface sediment compared with the shallow mofette. However, within the mofette and the deep subsurface sediment, the abundance of microbes does not show a typical decrease with depth, indicating that the uprising CO2-rich groundwater has a strong influence on the microbial communities via providing sufficient substrate for anaerobic chemolithoautotrophic microorganisms. Illumina MiSeq sequencing of the 16S rRNA genes and multivariate statistics reveals that the pH strongly influences the microbial community composition in the mofette, while the subsurface microbial community is significantly influenced by the groundwater which motivated by the degassing CO2. Acidophilic microorganisms show a much higher relative abundance in the mofette. Meanwhile, the OTUs assigned to family Comamonadaceae are the dominant taxa which characterize the subsurface communities. Additionally, taxa involved in sulfur cycling characterizing the microbial communities in both mofette and CO2 dominated subsurface environments. Another investigated important geo-bio interaction is the influence of the seismic activity. During seismic events, released H2 may serve as the electron donor for microbial hydrogenotrophic processes, such as methanogenesis. To determine whether the seismic events can potentially trigger methanogenesis by the elevated geogenic H2 concentration, we performed laboratory simulation experiments with sediments retrieved from the drillings. The simulation results indicate that after the addition of hydrogen, substantial amounts of methane were produced in incubated mofette sediments and deep subsurface sediments. The methanogenic hydrogenotrophic genera Methanobacterium was highly enriched during the incubation. The modeling of the in-situ observation of the earthquake swarm period in 2000 at the Novy Kostel focal area/Czech Republic and our laboratory simulation experiments reveals a close relation between seismic activities and microbial methane production via earthquake-induced H2 release. We thus conclude that H2 - which is released during seismic activity - can potentially trigger methanogenic activity in the deep subsurface. Based on this conclusion, we further hypothesize that the hydrogenotrophic early life on Earth was boosted by the Late Heavy Bombardment induced seismic activity in approximately 4.2 to 3.8 Ga.}, language = {en} } @masterthesis{Lehmann2017, type = {Bachelor Thesis}, author = {Lehmann, Lukas}, title = {Performance Test von Phasenpickern}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401993}, school = {Universit{\"a}t Potsdam}, pages = {I, 40, XXXIX}, year = {2017}, abstract = {Die genauen Einsatzzeiten seismischer P-Phasen von Erdbeben werden in SeisComP3 und anderen Auswerteprogrammen standardm{\"a}ßig und in Echtzeit automatisch bestimmt. S-Phasen stellen dagegen eine weit gr{\"o}ßere Herausforderung dar. Nur mit genauen Picks der P- bzw. S-Phasen k{\"o}nnen die Erdbebenlokationen korrekt und stabil bestimmt werden. Darum besteht erhebliches Interesse, diese mit hoher Genauigkeit zu bestimmen. Das Ziel der vorliegenden Bachelorarbeit war es, vier verschiedene, bereits vorhandene S-Phasenpicker auf ausgew{\"a}hlte Parameter optimal zu konfigurieren, auf Testdaten anzuwenden und deren Leistungsf{\"a}higkeit objektiv zu bewerten. Dazu wurden ein S-Picker (S-L2) aus dem OpenSource SeisComp3-Programmpaket, zwei S-Picker (S-AIC, S-AIC-V) als kommerzielles Modul der Firma gempa GmbH f{\"u}r SeisComP3 und ein S-Picker (Frequenzband) aus dem OpenSource PhasePaPy-Paket ausgew{\"a}hlt. Die Bewertung erfolgte durch Vergleich automatischer Picks mit manuell bestimmten Einsatzzeiten. Alle vier Picker wurden separat konfiguriert und auf drei verschiedene Datens{\"a}tze von Erdbeben in N-Chile und im Vogtland, Deutschland, angewandt. Dazu wurden regional bzw. lokal typische Erdbeben zuf{\"a}llig ausgew{\"a}hlt und die P- und S-Phasen manuell bestimmt. Mit den zu testenden S-Pickeralgorithmen wurden dieselben Daten durchsucht und die Picks automatisch bestimmt. Die Konfigurationen der Picker wurden gleichzeitig automatisch und objektiv durch iterative Anpassung optimiert. Ein neu erstelltes Bewertungssystem vergleicht die manuellen und die automatisch gefundenen S-Picks anhand von definierten Qualit{\"a}tsfaktoren. Die Qualit{\"a}tsfaktoren sind: der Mittelwert und die Standardabweichung der zeitlichen Differenzen zwischen den S-Picks, die Anzahl an {\"u}bereinstimmenden S-Picks, die Prozentangaben {\"u}ber m{\"o}gliche S-Picks und die ben{\"o}tigt Rechenzeit. Die objektive Bewertung erfolgte anhand eines Scores. Der Scorewert ergibt sich aus der gewichteten Summe folgender normierter Qualit{\"a}tsfaktoren: Standardabweichung (20\%), Mittelwert (20\%) und Prozentangabe {\"u}ber m{\"o}gliche S-Picks (60\%). Konfigurationen mit hohem Score werden bevorzugt. Die bevorzugten Konfigurationen der verschiedenen Picker wurden miteinander verglichen, um den am besten geeigneten S-Pickeralgorithmus zu bestimmen. Allgemein zeigt sich, dass der S-AIC Picker f{\"u}r jeden der drei Datens{\"a}tze die h{\"o}chsten Scores und damit die besten Ergebnisse liefert. Dabei wurde f{\"u}r jeden Datensatz ein andere Konfiguration der Parameter des S-AIC Pickers als die am besten geeignete bezeichnet. Daher ist f{\"u}r jede Erdbebenregion eine andere Konfigurationen erforderlich, um optimale Ergebnisse mit diesem S-Picker zu bekommen.}, language = {de} } @phdthesis{JaraMunoz2016, author = {Jara Mu{\~n}oz, Julius}, title = {Quantifying forearc deformation patterns using coastal geomorphic markers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102652}, school = {Universit{\"a}t Potsdam}, pages = {XXV, 213}, year = {2016}, abstract = {Rapidly uplifting coastlines are frequently associated with convergent tectonic boundaries, like subduction zones, which are repeatedly breached by giant megathrust earthquakes. The coastal relief along tectonically active realms is shaped by the effect of sea-level variations and heterogeneous patterns of permanent tectonic deformation, which are accumulated through several cycles of megathrust earthquakes. However, the correlation between earthquake deformation patterns and the sustained long-term segmentation of forearcs, particularly in Chile, remains poorly understood. Furthermore, the methods used to estimate permanent deformation from geomorphic markers, like marine terraces, have remained qualitative and are based on unrepeatable methods. This contrasts with the increasing resolution of digital elevation models, such as Light Detection and Ranging (LiDAR) and high-resolution bathymetric surveys. Throughout this thesis I study permanent deformation in a holistic manner: from the methods to assess deformation rates, to the processes involved in its accumulation. My research focuses particularly on two aspects: Developing methodologies to assess permanent deformation using marine terraces, and comparing permanent deformation with seismic cycle deformation patterns under different spatial scales along the M8.8 Maule earthquake (2010) rupture zone. Two methods are developed to determine deformation rates from wave-built and wave-cut terraces respectively. I selected an archetypal example of a wave-built terrace at Santa Maria Island studying its stratigraphy and recognizing sequences of reoccupation events tied with eleven radiocarbon sample ages (14C ages). I developed a method to link patterns of reoccupation with sea-level proxies by iterating relative sea level curves for a range of uplift rates. I find the best fit between relative sea-level and the stratigraphic patterns for an uplift rate of 1.5 +- 0.3 m/ka. A Graphical User Interface named TerraceM® was developed in Matlab®. This novel software tool determines shoreline angles in wave-cut terraces under different geomorphic scenarios. To validate the methods, I select test sites in areas of available high-resolution LiDAR topography along the Maule earthquake rupture zone and in California, USA. The software allows determining the 3D location of the shoreline angle, which is a proxy for the estimation of permanent deformation rates. The method is based on linear interpolations to define the paleo platform and cliff on swath profiles. The shoreline angle is then located by intersecting these interpolations. The accuracy and precision of TerraceM® was tested by comparing its results with previous assessments, and through an experiment with students in a computer lab setting at the University of Potsdam. I combined the methods developed to analyze wave-built and wave-cut terraces to assess regional patterns of permanent deformation along the (2010) Maule earthquake rupture. Wave-built terraces are tied using 12 Infra Red Stimulated luminescence ages (IRSL ages) and shoreline angles in wave-cut terraces are estimated from 170 aligned swath profiles. The comparison of coseismic slip, interseismic coupling, and permanent deformation, leads to three areas of high permanent uplift, terrace warping, and sharp fault offsets. These three areas correlate with regions of high slip and low coupling, as well as with the spatial limit of at least eight historical megathrust ruptures (M8-9.5). I propose that the zones of upwarping at Arauco and Topocalma reflect changes in frictional properties of the megathrust, which result in discrete boundaries for the propagation of mega earthquakes. To explore the application of geomorphic markers and quantitative morphology in offshore areas I performed a local study of patterns of permanent deformation inferred from hitherto unrecognized drowned shorelines at the Arauco Bay, at the southern part of the (2010) Maule earthquake rupture zone. A multidisciplinary approach, including morphometry, sedimentology, paleontology, 3D morphoscopy, and a landscape Evolution Model is used to recognize, map, and assess local rates and patterns of permanent deformation in submarine environments. Permanent deformation patterns are then reproduced using elastic models to assess deformation rates of an active submarine splay fault defined as Santa Maria Fault System. The best fit suggests a reverse structure with a slip rate of 3.7 m/ka for the last 30 ka. The register of land level changes during the earthquake cycle at Santa Maria Island suggest that most of the deformation may be accrued through splay fault reactivation during mega earthquakes, like the (2010) Maule event. Considering a recurrence time of 150 to 200 years, as determined from historical and geological observations, slip between 0.3 and 0.7 m per event would be required to account for the 3.7 m/ka millennial slip rate. However, if the SMFS slips only every ~1000 years, representing a few megathrust earthquakes, then a slip of ~3.5 m per event would be required to account for the long- term rate. Such event would be equivalent to a magnitude ~6.7 earthquake capable to generate a local tsunami. The results of this thesis provide novel and fundamental information regarding the amount of permanent deformation accrued in the crust, and the mechanisms responsible for this accumulation at millennial time-scales along the M8.8 Maule earthquake (2010) rupture zone. Furthermore, the results of this thesis highlight the application of quantitative geomorphology and the use of repeatable methods to determine permanent deformation, improve the accuracy of marine terrace assessments, and estimates of vertical deformation rates in tectonically active coastal areas. This is vital information for adequate coastal-hazard assessments and to anticipate realistic earthquake and tsunami scenarios.}, language = {en} } @phdthesis{Marc2016, author = {Marc, Odin}, title = {Earthquake-induced landsliding}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96808}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 171}, year = {2016}, abstract = {Earthquakes deform Earth's surface, building long-lasting topographic features and contributing to landscape and mountain formation. However, seismic waves produced by earthquakes may also destabilize hillslopes, leading to large amounts of soil and bedrock moving downslope. Moreover, static deformation and shaking are suspected to damage the surface bedrock and therefore alter its future properties, affecting hydrological and erosional dynamics. Thus, earthquakes participate both in mountain building and stimulate directly or indirectly their erosion. Moreover, the impact of earthquakes on hillslopes has important implications for the amount of sediment and organic matter delivered to rivers, and ultimately to oceans, during episodic catastrophic seismic crises, the magnitude of life and property losses associated with landsliding, the perturbation and recovery of landscape properties after shaking, and the long term topographic evolution of mountain belts. Several of these aspects have been addressed recently through individual case studies but additional data compilation as well as theoretical or numerical modelling are required to tackle these issues in a more systematic and rigorous manner. This dissertation combines data compilation of earthquake characteristics, landslide mapping, and seismological data interpretation with physically-based modeling in order to address how earthquakes impact on erosional processes and landscape evolution. Over short time scales (10-100 s) and intermediate length scales (10 km), I have attempted to improve our understanding and ability to predict the amount of landslide debris triggered by seismic shaking in epicentral areas. Over long time scales (1-100 ky) and across a mountain belt (100 km) I have modeled the competition between erosional unloading and building of topography associated with earthquakes. Finally, over intermediate time scales (1-10 y) and at the hillslope scale (0.1-1 km) I have collected geomorphological and seismological data that highlight persistent effects of earthquakes on landscape properties and behaviour. First, I compiled a database on earthquakes that produced significant landsliding, including an estimate of the total landslide volume and area, and earthquake characteristics such as seismic moment and source depth. A key issue is the accurate conversion of landslide maps into volume estimates. Therefore I also estimated how amalgamation - when mapping errors lead to the bundling of multiple landslide into a single polygon - affects volume estimates from various earthquake-induced landslide inventories and developed an algorithm to automatically detect this artifact. The database was used to test a physically-based prediction of the total landslide area and volume caused by earthquakes, based on seismological scaling relationships and a statistical description of the landscape properties. The model outperforms empirical fits in accuracy, with 25 out of 40 cases well predicted, and allows interpretation of many outliers in physical terms. Apart from seismological complexities neglected by the model I found that exceptional rock strength properties or antecedent conditions may explain most outliers. Second, I assessed the geomorphic effects of large earthquakes on landscape dynamics by surveying the temporal evolution of precipitation-normalized landslide rate. I found strongly elevated landslide rates following earthquakes that progressively recover over 1 to 4 years, indicating that regolith strength drops and recovers. The relaxation is clearly non-linear for at least one case, and does not seem to correlate with coseismic landslide reactivation, water table level increase or tree root-system recovery. I suggested that shallow bedrock is damaged by the earthquake and then heals on annual timescales. Such variations in ground strength must be translated into shallow subsurface seismic velocities that are increasingly surveyed with ambient seismic noise correlations. With seismic noise autocorrelation I computed the seismic velocity in the epicentral areas of three earthquakes where I constrained a change in landslide rate. We found similar recovery dynamics and timescales, suggesting that seismic noise correlation techniques could be further developed to meaningfully assess ground strength variations for landscape dynamics. These two measurements are also in good agreement with the temporal dynamics of post-seismic surface displacement measured by GPS. This correlation suggests that the surface healing mechanism may be driven by tectonic deformation, and that the surface regolith and fractured bedrock may behave as a granular media that slowly compacts as it is sheared or vibrated. Last, I compared our model of earthquake-induced landsliding with a standard formulation of surface deformation caused by earthquakes to understand which parameters govern the competition between the building and destruction of topography caused by earthquakes. In contrast with previous studies I found that very large (Mw>8) earthquakes always increase the average topography, whereas only intermediate (Mw ~ 7) earthquakes in steep landscapes may reduce topography. Moreover, I illustrated how the net effect of earthquakes varies with depth or landscape steepness implying a complex and ambivalent role through the life of a mountain belt. Further I showed that faults producing a Gutenberg-Richter distribution of earthquake sizes, will limit topography over a larger range of fault sizes than faults producing repeated earthquakes with a characteristic size.}, language = {en} } @phdthesis{Kieling2015, author = {Kieling, Katrin}, title = {Quantification of ground motions by broadband simulations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85989}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 118}, year = {2015}, abstract = {In many procedures of seismic risk mitigation, ground motion simulations are needed to test systems or improve their effectiveness. For example they may be used to estimate the level of ground shaking caused by future earthquakes. Good physical models for ground motion simulation are also thought to be important for hazard assessment, as they could close gaps in the existing datasets. Since the observed ground motion in nature shows a certain variability, part of which cannot be explained by macroscopic parameters such as magnitude or position of an earthquake, it would be desirable that a good physical model is not only able to produce one single seismogram, but also to reveal this natural variability. In this thesis, I develop a method to model realistic ground motions in a way that is computationally simple to handle, permitting multiple scenario simulations. I focus on two aspects of ground motion modelling. First, I use deterministic wave propagation for the whole frequency range - from static deformation to approximately 10 Hz - but account for source variability by implementing self-similar slip distributions and rough fault interfaces. Second, I scale the source spectrum so that the modelled waveforms represent the correct radiated seismic energy. With this scaling I verify whether the energy magnitude is suitable as an explanatory variable, which characterises the amount of energy radiated at high frequencies - the advantage of the energy magnitude being that it can be deduced from observations, even in real-time. Applications of the developed method for the 2008 Wenchuan (China) earthquake, the 2003 Tokachi-Oki (Japan) earthquake and the 1994 Northridge (California, USA) earthquake show that the fine source discretisations combined with the small scale source variability ensure that high frequencies are satisfactorily introduced, justifying the deterministic wave propagation approach even at high frequencies. I demonstrate that the energy magnitude can be used to calibrate the high-frequency content in ground motion simulations. Because deterministic wave propagation is applied to the whole frequency range, the simulation method permits the quantification of the variability in ground motion due to parametric uncertainties in the source description. A large number of scenario simulations for an M=6 earthquake show that the roughness of the source as well as the distribution of fault dislocations have a minor effect on the simulated variability by diminishing directivity effects, while hypocenter location and rupture velocity more strongly influence the variability. The uncertainty in energy magnitude, however, leads to the largest differences of ground motion amplitude between different events, resulting in a variability which is larger than the one observed. For the presented approach, this dissertation shows (i) the verification of the computational correctness of the code, (ii) the ability to reproduce observed ground motions and (iii) the validation of the simulated ground motion variability. Those three steps are essential to evaluate the suitability of the method for means of seismic risk mitigation.}, language = {en} } @phdthesis{Mohr2013, author = {Mohr, Christian Heinrich}, title = {Hydrological and erosion responses to man-made and natural disturbances : insights from forested catchments in South-central Chile}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70146}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Logging and large earthquakes are disturbances that may significantly affect hydrological and erosional processes and process rates, although in decisively different ways. Despite numerous studies that have documented the impacts of both deforestation and earthquakes on water and sediment fluxes, a number of details regarding the timing and type of de- and reforestation; seismic impacts on subsurface water fluxes; or the overall geomorphic work involved have remained unresolved. The main objective of this thesis is to address these shortcomings and to better understand and compare the hydrological and erosional process responses to such natural and man-made disturbances. To this end, south-central Chile provides an excellent natural laboratory owing to its high seismicity and the ongoing conversion of land into highly productive plantation forests. In this dissertation I combine paired catchment experiments, data analysis techniques, and physics-based modelling to investigate: 1) the effect of plantation forests on water resources, 2) the source and sink behavior of timber harvest areas in terms of overland flow generation and sediment fluxes, 3) geomorphic work and its efficiency as a function of seasonal logging, 4) possible hydrologic responses of the saturated zone to the 2010 Maule earthquake and 5) responses of the vadose zone to this earthquake. Re 1) In order to quantify the hydrologic impact of plantation forests, it is fundamental to first establish their water balances. I show that tree species is not significant in this regard, i.e. Pinus radiata and Eucalyptus globulus do not trigger any decisive different hydrologic response. Instead, water consumption is more sensitive to soil-water supply for the local hydro-climatic conditions. Re 2) Contradictory opinions exist about whether timber harvest areas (THA) generate or capture overland flow and sediment. Although THAs contribute significantly to hydrology and sediment transport because of their spatial extent, little is known about the hydrological and erosional processes occurring on them. I show that THAs may act as both sources and sinks for overland flow, which in turn intensifies surface erosion. Above a rainfall intensity of ~20 mm/h, which corresponds to <10\% of all rainfall, THAs may generate runoff whereas below that threshold they remain sinks. The overall contribution of Hortonian runoff is thus secondary considering the local rainfall regime. The bulk of both runoff and sediment is generated by Dunne, saturation excess, overland flow. I also show that logging may increase infiltrability on THAs which may cause an initial decrease in streamflow followed by an increase after the groundwater storage has been refilled. Re 3) I present changes in frequency-magnitude distributions following seasonal logging by applying Quantile Regression Forests at hitherto unprecedented detail. It is clearly the season that controls the hydro-geomorphic work efficiency of clear cutting. Logging, particularly dry seasonal logging, caused a shift of work efficiency towards less flashy and mere but more frequent moderate rainfall-runoff events. The sediment transport is dominated by Dunne overland flow which is consistent with physics-based modelling using WASA-SED. Re 4) It is well accepted that earthquakes may affect hydrological processes in the saturated zone. Assuming such flow conditions, consolidation of saturated saprolitic material is one possible response. Consolidation raises the hydraulic gradients which may explain the observed increase in discharge following earthquakes. By doing so, squeezed water saturates the soil which in turn increases the water accessible for plant transpiration. Post-seismic enhanced transpiration is reflected in the intensification of diurnal cycling. Re 5) Assuming unsaturated conditions, I present the first evidence that the vadose zone may also respond to seismic waves by releasing pore water which in turn feeds groundwater reservoirs. By doing so, water tables along the valley bottoms are elevated thus providing additional water resources to the riparian vegetation. By inverse modelling, the transient increase in transpiration is found to be 30-60\%. Based on the data available, both hypotheses, are not testable. Finally, when comparing the hydrological and erosional effects of the Maule earthquake with the impact of planting exotic plantation forests, the overall observed earthquake effects are comparably small, and limited to short time scales.}, language = {en} }