@article{Moffat2015, author = {Moffat, Anthony F. J.}, title = {General overview of Wolf-Rayet stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87552}, pages = {13 -- 18}, year = {2015}, abstract = {Although we all use the name Wolf-Rayet to refer to specific groups of stars, "Wolf-Rayet" per se is really an astrophysical phenomenon of fast-moving, hot plasma, normally expanding around a hot star. However, expediency demands that we follow established traditions by referring to three specific kinds of WR stars: (1) cWR, "classical" He-burning descendants of massive, O-type stars, presumably all of which pass through a WR stage; (2) WNh, the most massive and luminous hydrogen-rich main-sequence stars with strong winds; and (3) [WR], the central stars of some 15 \% of Planetary Nebulae. Wolf-Rayet stars are the epitome of relatively stable stars with the highest mass-loss rates for their kind. It behooves us to understand the what, how and why of this circumstance, along with its manyfold and fascinating consequences.}, language = {en} } @article{Crowther2015, author = {Crowther, P. A.}, title = {Wolf-Rayet content of the Milky Way}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87562}, pages = {21 -- 26}, year = {2015}, abstract = {An overview of the known Wolf-Rayet (WR) population of the Milky Way is presented, including a brief overview of historical catalogues and recent advances based on infrared photometric and spectroscopic observations resulting in the current census of 642 (vl.13 online catalogue). The observed distribution of WR stars is considered with respect to known star clusters, given that ≤20\% of WR stars in the disk are located in clusters. WN stars outnumber WC stars at all galactocentric radii, while early-type WC stars are strongly biased against the inner Milky Way. Finally, recent estimates of the global WR population in the Milky Way are reassessed, with 1,200±100 estimated, such that the current census may be 50\% complete. A characteristic WR lifetime of 0.25 Myr is inferred for an initial mass threshold of 25 M⊙.}, language = {en} }