@phdthesis{Felisatti2024, author = {Felisatti, Arianna}, title = {Spatial-numerical associations: From biological foundations to embodied learning to contextual flexibility}, doi = {10.25932/publishup-64179}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-641791}, school = {Universit{\"a}t Potsdam}, pages = {x, 195}, year = {2024}, abstract = {Among the different meanings carried by numerical information, cardinality is fundamental for survival and for the development of basic as well as of higher numerical skills. Importantly, the human brain inherits from evolution a predisposition to map cardinality onto space, as revealed by the presence of spatial-numerical associations (SNAs) in humans and animals. Here, the mapping of cardinal information onto physical space is addressed as a hallmark signature characterizing numerical cognition. According to traditional approaches, cognition is defined as complex forms of internal information processing, taking place in the brain (cognitive processor). On the contrary, embodied cognition approaches define cognition as functionally linked to perception and action, in the continuous interaction between a biological body and its physical and sociocultural environment. Embracing the principles of the embodied cognition perspective, I conducted four novel studies designed to unveil how SNAs originate, develop, and adapt, depending on characteristics of the organism, the context, and their interaction. I structured my doctoral thesis in three levels. At the grounded level (Study 1), I unfold the biological foundations underlying the tendency to map cardinal information across space; at the embodied level (Study 2), I reveal the impact of atypical motor development on the construction of SNAs; at the situated level (Study 3), I document the joint influence of visuospatial attention and task properties on SNAs. Furthermore, I experimentally investigate the presence of associations between physical and numerical distance, another numerical property fundamental for the development of efficient mathematical minds (Study 4). In Study 1, I present the Brain's Asymmetric Frequency Tuning hypothesis that relies on hemispheric asymmetries for processing spatial frequencies, a low-level visual feature that the (in)vertebrate brain extracts from any visual scene to create a coherent percept of the world. Computational analyses of the power spectra of the original stimuli used to document the presence of SNAs in human newborns and animals, support the brain's asymmetric frequency tuning as a theoretical account and as an evolutionarily inherited mechanism scaffolding the universal and innate tendency to represent cardinality across horizontal space. In Study 2, I explore SNAs in children with rare genetic neuromuscular diseases: spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). SMA children never accomplish independent motoric exploration of their environment; in contrast, DMD children do explore but later lose this ability. The different SNAs reported by the two groups support the critical role of early sensorimotor experiences in the spatial representation of cardinality. In Study 3, I directly compare the effects of overt attentional orientation during explicit and implicit processing of numerical magnitude. First, the different effects of attentional orienting based on the type of assessment support different mechanisms underlying SNAs during explicit and implicit assessment of numerical magnitude. Secondly, the impact of vertical shifts of attention on the processing of numerical distance sheds light on the correspondence between numerical distance and peri-personal distance. In Study 4, I document the presence of different SNAs, driven by numerical magnitude and numerical distance, by employing different response mappings (left vs. right and near vs. distant). In the field of numerical cognition, the four studies included in the present thesis contribute to unveiling how the characteristics of the organism and the environment influence the emergence, the development, and the flexibility of our attitude to represent cardinal information across space, thus supporting the predictions of the embodied cognition approach. Furthermore, they inform a taxonomy of body-centred factors (biological properties of the brain and sensorimotor system) modulating the spatial representation of cardinality throughout the course of life, at the grounded, embodied, and situated levels. If the awareness for different variables influencing SNAs over the course of life is important, it is equally important to consider the organism as a whole in its sensorimotor interaction with the world. Inspired by my doctoral research, here I propose a holistic perspective that considers the role of evolution, embodiment, and environment in the association of cardinal information with directional space. The new perspective advances the current approaches to SNAs, both at the conceptual and at the methodological levels. Unveiling how the mental representation of cardinality emerges, develops, and adapts is necessary to shape efficient mathematical minds and achieve economic productivity, technological progress, and a higher quality of life.}, language = {en} } @misc{KuehneNenaschewMiklashevsky2022, author = {K{\"u}hne, Katharina and Nenaschew, Kristina and Miklashevsky, Alex}, title = {Space-valence mapping of social concepts}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {828}, issn = {1866-8364}, doi = {10.25932/publishup-58755}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587556}, pages = {13}, year = {2022}, abstract = {Introduction: The body-specificity hypothesis states that in right-handers, positive concepts should be associated with the right side and negative concepts with the left side of the body. Following this hypothesis, our study postulated that negative out-group ethnic stereotypes would be associated with the left side, and positive in-group stereotypes would be associated with the right side. Methods: The experiment consisted of two parts. First, we measured the spatial mapping of ethnic stereotypes by using a sensibility judgment task, in which participants had to decide whether a sentence was sensible or not by pressing either a left or a right key. The sentences included German vs. Arabic proper names. Second, we measured implicit ethnic stereotypes in the same participants using the Go/No-go Association Task (GNAT), in which Arabic vs. German proper names were presented in combination with positive vs. negative adjectives. Right-handed German native speakers (Nā€‰=ā€‰92) participated in an online study. Results: As predicted, in the GNAT, participants reacted faster to German names combined with positive adjectives and to Arabic names combined with negative adjectives, which is diagnostic of existing valenced in-and outgroup ethnic stereotypes. However, we failed to find any reliable effects in the sensibility judgment task, i.e., there was no evidence of spatial mapping of positive and negative ethnic stereotypes. There was no correlation between the results of the two tasks at the individual level. Further Bayesian analysis and exploratory analysis in the left-handed subsample (Nā€‰=ā€‰9) corroborated the evidence in favor of null results. Discussion: Our study suggests that ethnic stereotypes are not automatically mapped in a body-specific manner.}, language = {en} } @misc{WiepkeMiklashevsky2021, author = {Wiepke, Axel P. and Miklashevsky, Alex}, title = {Imaginary Worlds and Their Borders: An Opinion Article}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, volume = {12}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-55099}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550991}, pages = {1 -- 2}, year = {2021}, language = {en} } @misc{FelisattiLaubrockShakietal.2020, author = {Felisatti, Arianna and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {Commentary}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {620}, issn = {1866-8364}, doi = {10.25932/publishup-46041}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460413}, pages = {6}, year = {2020}, language = {en} } @misc{FischerMiklashevskyShaki2019, author = {Fischer, Martin H. and Miklashevsky, Alex A. and Shaki, Samuel}, title = {Commentary : The Developmental Trajectory of the Operational Momentum Effect}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {502}, issn = {1866-8364}, doi = {10.25932/publishup-42316}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423169}, pages = {3}, year = {2019}, language = {en} } @misc{LobmaierFischer2017, author = {Lobmaier, Janek S. and Fischer, Martin H.}, title = {Facial feedback affects perceived intensity but not quality of emotional expressions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400157}, pages = {12}, year = {2017}, abstract = {Motivated by conflicting evidence in the literature, we re-assessed the role of facial feedback when detecting quantitative or qualitative changes in others' emotional expressions. Fifty-three healthy adults observed self-paced morph sequences where the emotional facial expression either changed quantitatively (i.e., sad-to-neutral, neutral-to-sad, happy-to-neutral, neutral-to-happy) or qualitatively (i.e. from sad to happy, or from happy to sad). Observers held a pen in their own mouth to induce smiling or frowning during the detection task. When morph sequences started or ended with neutral expressions we replicated a congruency effect: Happiness was perceived longer and sooner while smiling; sadness was perceived longer and sooner while frowning. Interestingly, no such congruency effects occurred for transitions between emotional expressions. These results suggest that facial feedback is especially useful when evaluating the intensity of a facial expression, but less so when we have to recognize which emotion our counterpart is expressing.}, language = {en} } @misc{Galetzka2017, author = {Galetzka, Cedric}, title = {The Story So Far: How Embodied Cognition Advances Our Understanding of Meaning-Making}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400563}, pages = {5}, year = {2017}, abstract = {Meaning-making in the brain has become one of the most intensely discussed topics in cognitive science. Traditional theories on cognition that emphasize abstract symbol manipulations often face a dead end: The symbol grounding problem. The embodiment idea tries to overcome this barrier by assuming that the mind is grounded in sensorimotor experiences. A recent surge in behavioral and brain-imaging studies has therefore focused on the role of the motor cortex in language processing. Concrete, action-related words have received convincing evidence to rely on sensorimotor activation. Abstract concepts, however, still pose a distinct challenge for embodied theories on cognition. Fully embodied abstraction mechanisms were formulated but sensorimotor activation alone seems unlikely to close the explanatory gap. In this respect, the idea of integration areas, such as convergence zones or the 'hub and spoke' model, do not only appear like the most promising candidates to account for the discrepancies between concrete and abstract concepts but could also help to unite the field of cognitive science again. The current review identifies milestones in cognitive science research and recent achievements that highlight fundamental challenges, key questions and directions for future research.}, language = {en} }