@misc{ElbertLaschewskyRingsdorf1985, author = {Elbert, R. and Laschewsky, Andr{\´e} and Ringsdorf, H.}, title = {Hydrophilic spacer groups in polymerizable lipids: formation of biomembrane models from bulk polymerized lipids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17361}, year = {1985}, abstract = {A variety of polymerizable lipids containing a hydrophilic spacer group between the reactive group and the main amphiphilic structure have been synthesized. They were investigated in monolayers, liposomes, and multilayers. When the spacer concept was used, efficient decoupling of the motions of the polymeric chain and the amphiphilic side groups is achieved. Thus, the often found loss of the important fluid phases by polymerization is avoided. Polymeric monolayers of the spacer lipid, prepared either by polymerization in the monolayer or by spreading of prepolymerized lipid, exhibit nearly identical surface pressure-area diagrams. Most distinctly, the successful decoupling of the motions of the polymer main chain and the membrane forming amphiphilic side groups is demonstrated by the self-organization of bulk polymerized spacer lipids to polymeric liposomes. In addition, spacer lipids are able to build polymeric Langmuir-Blodgett multilayers. The decoupling of the polymer main chain and the membrane-forming amphiphilic side groups enables the deposition of already polymeric monolayers onto supports to form defined multilayers. If, alternatively, monomeric monolayers are deposited and polymerized on the support, defects in the layers due to structural changes during the polymerization are avoided by the flexible spacer group.}, language = {en} } @misc{KoeberleLaschewsky1994, author = {K{\"o}berle, Peter and Laschewsky, Andr{\´e}}, title = {Hybrid materials from organic polymers and inorganic salts}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26884}, year = {1994}, abstract = {The prepaparation of amorphous, homogeneous blends of zwitterionic polymers and transition metal salts was investigated. Homogeneous miscibility was achieved in many cases up to equimolar amounts of salt, depending on the anion and cation chosen. Various analytical techniques point to a solid state solution of the inorganic ions in the polymer matrix.}, language = {en} } @misc{SchoenemannLaschewskyRosenhahn2018, author = {Sch{\"o}nemann, Eric and Laschewsky, Andr{\´e} and Rosenhahn, Axel}, title = {Exploring the long-term hydrolytic behavior of zwitterionic polymethacrylates and polymethacrylamides}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1091}, issn = {1866-8372}, doi = {10.25932/publishup-47305}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473052}, pages = {25}, year = {2018}, abstract = {The hydrolytic stability of polymers to be used for coatings in aqueous environments, for example, to confer anti-fouling properties, is crucial. However, long-term exposure studies on such polymers are virtually missing. In this context, we synthesized a set of nine polymers that are typically used for low-fouling coatings, comprising the well-established poly(oligoethylene glycol methylether methacrylate), poly(3-(N-2-methacryloylethyl-N,N-dimethyl) ammoniopropanesulfonate) ("sulfobetaine methacrylate"), and poly(3-(N-3-methacryamidopropyl-N,N-dimethyl)ammoniopropanesulfonate) ("sulfobetaine methacrylamide") as well as a series of hitherto rarely studied polysulfabetaines, which had been suggested to be particularly hydrolysis-stable. Hydrolysis resistance upon extended storage in aqueous solution is followed by ¹H NMR at ambient temperature in various pH regimes. Whereas the monomers suffered slow (in PBS) to very fast hydrolysis (in 1 M NaOH), the polymers, including the polymethacrylates, proved to be highly stable. No degradation of the carboxyl ester or amide was observed after one year in PBS, 1 M HCl, or in sodium carbonate buffer of pH 10. This demonstrates their basic suitability for anti-fouling applications. Poly(sulfobetaine methacrylamide) proved even to be stable for one year in 1 M NaOH without any signs of degradation. The stability is ascribed to a steric shielding effect. The hemisulfate group in the polysulfabetaines, however, was found to be partially labile.}, language = {en} } @misc{HildebrandLaschewskyPaechetal.2016, author = {Hildebrand, Viet and Laschewsky, Andr{\´e} and P{\"a}ch, Michael and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Effect of the zwitterion structure on the thermo-responsive behaviour of poly(sulfobetaine methacrylates)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102028}, pages = {13}, year = {2016}, abstract = {A series of new sulfobetaine methacrylates, including nitrogen-containing saturated heterocycles, was synthesised by systematically varying the substituents of the zwitterionic group. Radical polymerisation via the RAFT (reversible addition-fragmentation chain transfer) method in trifluoroethanol proceeded smoothly and was well controlled, yielding polymers with predictable molar masses. Molar mass analysis and control of the end-group fidelity were facilitated by end-group labeling with a fluorescent dye. The polymers showed distinct thermo-responsive behaviour of the UCST (upper critical solution temperature) type in an aqueous solution, which could not be simply correlated to their molecular structure via an incremental analysis of the hydrophilic and hydrophobic elements incorporated within them. Increasing the spacer length separating the ammonium and the sulfonate groups of the zwitterion moiety from three to four carbons increased the phase transition temperatures markedly, whereas increasing the length of the spacer separating the ammonium group and the carboxylate ester group on the backbone from two to three carbons provoked the opposite effect. Moreover, the phase transition temperatures of the analogous polyzwitterions decreased in the order dimethylammonio > morpholinio > piperidinio alkanesulfonates. In addition to the basic effect of the polymers' precise molecular structure, the concentration and the molar mass dependence of the phase transition temperatures were studied. Furthermore, we investigated the influence of added low molar mass salts on the aqueous-phase behaviour for sodium chloride and sodium bromide as well as sodium and ammonium sulfate. The strong effects evolved in a complex way with the salt concentration. The strength of these effects depended on the nature of the anion added, increasing in the order sulfate < chloride < bromide, thus following the empirical Hofmeister series. In contrast, no significant differences were observed when changing the cation, i.e. when adding sodium or ammonium sulfate.}, language = {en} } @misc{BubeckLaschewskyLupoetal.1991, author = {Bubeck, Christoph and Laschewsky, Andr{\´e} and Lupo, Donald and Neher, Dieter and Ottenbreit, Petra and Paulus, Wolfgang and Prass, Werner and Ringsdorf, Helmut and Wegner, Gerhard}, title = {Amphiphilic dyes for nonlinear optics: Dependence of second harmonic generation on functional group substitution}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17201}, year = {1991}, language = {en} } @misc{InalKoelschSellrieetal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Sellrie, Frank and Schenk, J{\"o}rg A. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95336}, pages = {6373 -- 6381}, year = {2013}, abstract = {We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)- functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing.}, language = {en} }