@phdthesis{Schmallowsky2009, author = {Schmallowsky, Antje}, title = {Visualisierung dynamischer Raumph{\"a}nomene in Geoinformationssystemen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41262}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Die visuelle Kommunikation ist eine effiziente Methode, um dynamische Ph{\"a}nomene zu beschreiben. Informationsobjekte pr{\"a}zise wahrzunehmen, einen schnellen Zugriff auf strukturierte und relevante Informationen zu erm{\"o}glichen, erfordert konsistente und nach dem formalen Minimalprinzip konzipierte Analyse- und Darstellungsmethoden. Dynamische Raumph{\"a}nomene in Geoinformationssystemen k{\"o}nnen durch den Mangel an konzeptionellen Optimierungsanpassungen aufgrund ihrer statischen Systemstruktur nur bedingt die Informationen von Raum und Zeit modellieren. Die Forschung in dieser Arbeit ist daher auf drei interdisziplin{\"a}re Ans{\"a}tze fokussiert. Der erste Ansatz stellt eine echtzeitnahe Datenerfassung dar, die in Geodatenbanken zeitorientiert verwaltet wird. Der zweite Ansatz betrachtet Analyse- und Simulationsmethoden, die das dynamische Verhalten analysieren und prognostizieren. Der dritte Ansatz konzipiert Visualisierungsmethoden, die insbesondere dynamische Prozesse abbilden. Die Symbolisierung der Prozesse passt sich bedarfsweise in Abh{\"a}ngigkeit des Prozessverlaufes und der Interaktion zwischen Datenbanken und Simulationsmodellen den verschiedenen Entwicklungsphasen an. Dynamische Aspekte k{\"o}nnen so mit Hilfe bew{\"a}hrter Funktionen aus der GI-Science zeitnah mit modularen Werkzeugen entwickelt und visualisiert werden. Die Analyse-, Verschneidungs- und Datenverwaltungsfunktionen sollen hierbei als Nutzungs- und Auswertungspotential alternativ zu Methoden statischer Karten dienen. Bedeutend f{\"u}r die zeitliche Komponente ist das Verkn{\"u}pfen neuer Technologien, z. B. die Simulation und Animation, basierend auf einer strukturierten Zeitdatenbank in Verbindung mit statistischen Verfahren. Methodisch werden Modellans{\"a}tze und Visualisierungstechniken entwickelt, die auf den Bereich Verkehr transferiert werden. Verkehrsdynamische Ph{\"a}nomene, die nicht zusammenh{\"a}ngend und umfassend darstellbar sind, werden modular in einer serviceorientierten Architektur separiert, um sie in verschiedenen Ebenen r{\"a}umlich und zeitlich visuell zu pr{\"a}sentieren. Entwicklungen der Vergangenheit und Prognosen der Zukunft werden {\"u}ber verschiedene Berechnungsmethoden modelliert und visuell analysiert. Die Verkn{\"u}pfung einer Mikrosimulation (Abbildung einzelner Fahrzeuge) mit einer netzgesteuerten Makrosimulation (Abbildung eines gesamten Straßennetzes) erm{\"o}glicht eine maßstabsunabh{\"a}ngige Simulation und Visualisierung des Mobilit{\"a}tsverhaltens ohne zeitaufwendige Bewertungsmodellberechnungen. Zuk{\"u}nftig wird die visuelle Analyse raum-zeitlicher Ver{\"a}nderungen f{\"u}r planerische Entscheidungen ein effizientes Mittel sein, um Informationen {\"u}bergreifend verf{\"u}gbar, klar strukturiert und zweckorientiert zur Verf{\"u}gung zu stellen. Der Mehrwert durch visuelle Geoanalysen, die modular in einem System integriert sind, ist das flexible Auswerten von Messdaten nach zeitlichen und r{\"a}umlichen Merkmalen.}, language = {de} } @phdthesis{Grimbs2009, author = {Grimbs, Sergio}, title = {Towards structure and dynamics of metabolic networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32397}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {This work presents mathematical and computational approaches to cover various aspects of metabolic network modelling, especially regarding the limited availability of detailed kinetic knowledge on reaction rates. It is shown that precise mathematical formulations of problems are needed i) to find appropriate and, if possible, efficient algorithms to solve them, and ii) to determine the quality of the found approximate solutions. Furthermore, some means are introduced to gain insights on dynamic properties of metabolic networks either directly from the network structure or by additionally incorporating steady-state information. Finally, an approach to identify key reactions in a metabolic networks is introduced, which helps to develop simple yet useful kinetic models. The rise of novel techniques renders genome sequencing increasingly fast and cheap. In the near future, this will allow to analyze biological networks not only for species but also for individuals. Hence, automatic reconstruction of metabolic networks provides itself as a means for evaluating this huge amount of experimental data. A mathematical formulation as an optimization problem is presented, taking into account existing knowledge and experimental data as well as the probabilistic predictions of various bioinformatical methods. The reconstructed networks are optimized for having large connected components of high accuracy, hence avoiding fragmentation into small isolated subnetworks. The usefulness of this formalism is exemplified on the reconstruction of the sucrose biosynthesis pathway in Chlamydomonas reinhardtii. The problem is shown to be computationally demanding and therefore necessitates efficient approximation algorithms. The problem of minimal nutrient requirements for genome-scale metabolic networks is analyzed. Given a metabolic network and a set of target metabolites, the inverse scope problem has as it objective determining a minimal set of metabolites that have to be provided in order to produce the target metabolites. These target metabolites might stem from experimental measurements and therefore are known to be produced by the metabolic network under study, or are given as the desired end-products of a biotechological application. The inverse scope problem is shown to be computationally hard to solve. However, I assume that the complexity strongly depends on the number of directed cycles within the metabolic network. This might guide the development of efficient approximation algorithms. Assuming mass-action kinetics, chemical reaction network theory (CRNT) allows for eliciting conclusions about multistability directly from the structure of metabolic networks. Although CRNT is based on mass-action kinetics originally, it is shown how to incorporate further reaction schemes by emulating molecular enzyme mechanisms. CRNT is used to compare several models of the Calvin cycle, which differ in size and level of abstraction. Definite results are obtained for small models, but the available set of theorems and algorithms provided by CRNT can not be applied to larger models due to the computational limitations of the currently available implementations of the provided algorithms. Given the stoichiometry of a metabolic network together with steady-state fluxes and concentrations, structural kinetic modelling allows to analyze the dynamic behavior of the metabolic network, even if the explicit rate equations are not known. In particular, this sampling approach is used to study the stabilizing effects of allosteric regulation in a model of human erythrocytes. Furthermore, the reactions of that model can be ranked according to their impact on stability of the steady state. The most important reactions in that respect are identified as hexokinase, phosphofructokinase and pyruvate kinase, which are known to be highly regulated and almost irreversible. Kinetic modelling approaches using standard rate equations are compared and evaluated against reference models for erythrocytes and hepatocytes. The results from this simplified kinetic models can simulate acceptably the temporal behavior for small changes around a given steady state, but fail to capture important characteristics for larger changes. The aforementioned approach to rank reactions according to their influence on stability is used to identify a small number of key reactions. These reactions are modelled in detail, including knowledge about allosteric regulation, while all other reactions were still described by simplified reaction rates. These so-called hybrid models can capture the characteristics of the reference models significantly better than the simplified models alone. The resulting hybrid models might serve as a good starting point for kinetic modelling of genome-scale metabolic networks, as they provide reasonable results in the absence of experimental data, regarding, for instance, allosteric regulations, for a vast majority of enzymatic reactions.}, language = {en} }