@phdthesis{Schaber2002, author = {Schaber, J{\"o}rg}, title = {Phenology in Germany in the 20th century : methods, analyses and models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000532}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Die L{\"a}nge der Vegetationsperiode (VP) spielt eine zentrale Rolle f{\"u}r die interannuelle Variation der Kohlenstoffspeicherung terrestrischer {\"O}kosysteme. Die Analyse von Beobachtungsdaten hat gezeigt, dass sich die VP in den letzten Jahrzehnten in den n{\"o}rdlichen Breiten verl{\"a}ngert hat. Dieses Ph{\"a}nomen wurde oft im Zusammenhang mit der globalen Erw{\"a}rmung diskutiert, da die Ph{\"a}nologie von der Temperatur beeinflusst wird. Die Analyse der Pflanzenph{\"a}nologie in S{\"u}ddeutschland im 20. Jahrhundert zeigte: - Die starke Verfr{\"u}hung der Fr{\"u}hjahrsphasen in dem Jahrzehnt vor 1999 war kein singul{\"a}res Ereignis im 20. Jahrhundert. Schon in fr{\"u}heren Dekaden gab es {\"a}hnliche Trends. Es konnten Perioden mit unterschiedlichem Trendverhalten identifiziert werden. - Es gab deutliche Unterschiede in den Trends von fr{\"u}hen und sp{\"a}ten Fr{\"u}hjahrsphasen. Die fr{\"u}hen Fr{\"u}hjahrsphasen haben sich stetig verfr{\"u}ht, mit deutlicher Verfr{\"u}hung zwischen 1931 und 1948, moderater Verfr{\"u}hung zwischen 1948 und 1984 und starker Verfr{\"u}hung zwischen 1984 und 1999. Die sp{\"a}ten Fr{\"u}hjahrsphasen hingegen, wechselten ihr Trendverhalten in diesen Perioden von einer Verfr{\"u}hung zu einer deutlichen Versp{\"a}tung wieder zu einer starken Verfr{\"u}hung. Dieser Unterschied in der Trendentwicklung zwischen fr{\"u}hen und sp{\"a}ten Fr{\"u}hjahrsphasen konnte auch f{\"u}r ganz Deutschland in den Perioden 1951 bis 1984 und 1984 bis 1999 beobachtet werden. Der bestimmende Einfluss der Temperatur auf die Fr{\"u}hjahrsphasen und ihr modifizierender Einfluss auf die Herbstphasen konnte best{\"a}tigt werden. Es zeigt sich jedoch, dass - die Ph{\"a}nologie bestimmende Funktionen der Temperatur nicht mit einem globalen j{\"a}hrlichen CO2 Signal korreliert waren, welches als Index f{\"u}r die globale Erw{\"a}rmung verwendet wurde - ein Index f{\"u}r grossr{\"a}umige regionale Zirkulationsmuster (NAO-Index) nur zu einem kleinen Teil die beobachtete ph{\"a}nologischen Variabilit{\"a}t erkl{\"a}ren konnte. Das beobachtete unterschiedliche Trendverhalten zwischen fr{\"u}hen und sp{\"a}ten Fr{\"u}hjahrsphasen konnte auf die unterschiedliche Entwicklung von M{\"a}rz- und Apriltemperaturen zur{\"u}ckgef{\"u}hrt werden. W{\"a}hrend sich die M{\"a}rztemperaturen im Laufe des 20. Jahrhunderts mit einer zunehmenden Variabilit{\"a}t in den letzten 50 Jahren stetig erh{\"o}ht haben, haben sich die Apriltemperaturen zwischen dem Ende der 1940er und Mitte der 1980er merklich abgek{\"u}hlt und dann wieder deutlich erw{\"a}rmt. Es wurde geschlussfolgert, dass die Verfr{\"u}hungen in der Fr{\"u}hjahrsph{\"a}nologie in den letzten Dekaden Teile multi-dekadischer Fluktuationen sind, welche sich nach Spezies und relevanter saisonaler Temperatur unterscheiden. Aufgrund dieser Fluktuationen konnte kein Zusammenhang mit einem globalen Erw{\"a}rmungsignal gefunden werden. Im Durchschnitt haben sich alle betrachteten Fr{\"u}hjahrsphasen zwischen 1951 und 1999 in Naturr{\"a}umen in Deutschland zwischen 5 und 20 Tagen verfr{\"u}ht. Ein starker Unterschied in der Verfr{\"u}hung zwischen fr{\"u}hen und sp{\"a}ten Fr{\"u}hjahrsphasen liegt an deren erw{\"a}hntem unterschiedlichen Verhalten. Die Blattverf{\"a}rbung hat sich zwischen 1951 und 1999 f{\"u}r alle Spezies versp{\"a}tet, aber nach 1984 im Durchschnitt verfr{\"u}ht. Die VP hat sich in Deutschland zwischen 1951 und 1999 um ca. 10 Tage verl{\"a}ngert. Es ist haupts{\"a}chlich die {\"A}nderung in den Fr{\"u}hjahrphasen, die zu einer {\"A}nderung in der potentiell absorbierten Strahlung (PAS) f{\"u}hrt. Dar{\"u}ber hinaus sind es die sp{\"a}ten Fr{\"u}hjahrsphasen, die pro Tag Verfr{\"u}hung st{\"a}rker profitieren, da die zus{\"a}tzlichen Tage l{\"a}nger undw{\"a}rmer sind als dies f{\"u}r die fr{\"u}hen Phasen der Fall ist. Um die relative {\"A}nderung in PAS im Vergleich der Spezies abzusch{\"a}tzen, m{\"u}ssen allerdings auch die Ver{\"a}nderungen in den Herbstphasen ber{\"u}cksichtigt werden. Der deutliche Unterschied zwischen fr{\"u}hen und sp{\"a}ten Fr{\"u}hjahrsphasen konnte durch die Anwendung einer neuen Methode zur Konstruktion von Zeitreihen herausgearbeitet werden. Der neue methodische Ansatz erlaubte die Ableitung verl{\"a}sslicher 100-j{\"a}hriger Zeitreihen und die Konstruktion von lokalen kombinierten Zeitreihen, welche die Datenverf{\"u}gbarkeit f{\"u}r die Modellentwicklung erh{\"o}hten. Ausser analysierten Protokollierungsfehlern wurden mikroklimatische, genetische und Beobachtereinfl{\"u}sse als Quellen von Unsicherheit in ph{\"a}nologischen Daten identifiziert. Ph{\"a}nologischen Beobachtungen eines Ortes k{\"o}nnen sch{\"a}tzungsweise 24 Tage um das parametrische Mittel schwanken.Dies unterst{\"u}tzt die 30-Tage Regel f{\"u}r die Detektion von Ausreissern. Neue Ph{\"a}nologiemodelle, die den Blattaustrieb aus t{\"a}glichen Temperaturreihen simulieren, wurden entwickelt. Diese Modelle basieren auf einfachen Interaktionen zwischen aktivierenden und hemmenden Substanzen, welche die Entwicklungsstadien einer Pflanze bestimmen. Im Allgemeinen konnten die neuen Modelle die Beobachtungsdaten besser simulieren als die klassischen Modelle. Weitere Hauptresultate waren: - Der Bias der klassischen Modelle, d.h. {\"U}bersch{\"a}tzung von fr{\"u}hen und Untersch{\"a}tzung von sp{\"a}ten Beobachtungen, konnte reduziert, aber nicht vollst{\"a}ndig eliminiert werden. - Die besten Modellvarianten f{\"u}r verschiedene Spezies wiesen darauf hin, dass f{\"u}r die sp{\"a}ten Fr{\"u}hjahrsphasen die Tagesl{\"a}nge eine wichtigere Rolle spielt als f{\"u}r die fr{\"u}hen Phasen. - Die Vernalisation spielte gegen{\"u}ber den Temperaturen kurz vor dem Blattaustrieb nur eine untergeordnete Rolle.}, language = {en} }