@phdthesis{Hartmann2024, author = {Hartmann, Anne}, title = {Tracing the evolution of hillslope structure and hillslope hydrological response over ten millennia in two glacial forefields of different geology}, doi = {10.25932/publishup-62862}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-628629}, school = {Universit{\"a}t Potsdam}, pages = {XVIII, 138, XLIV}, year = {2024}, abstract = {Assessing the impact of global change on hydrological systems is one of the greatest hydrological challenges of our time. Changes in land cover, land use, and climate have an impact on water quantity, quality, and temporal availability. There is a widespread consensus that, given the far-reaching effects of global change, hydrological systems can no longer be viewed as static in their structure; instead, they must be regarded as entire ecosystems, wherein hydrological processes interact and coevolve with biological, geomorphological, and pedological processes. To accurately predict the hydrological response under the impact of global change, it is essential to understand this complex coevolution. The knowledge of how hydrological processes, in particular the formation of subsurface (preferential) flow paths, evolve within this coevolution and how they feed back to the other processes is still very limited due to a lack of observational data. At the hillslope scale, this intertwined system of interactions is known as the hillslope feedback cycle. This thesis aims to enhance our understanding of the hillslope feedback cycle by studying the coevolution of hillslope structure and hillslope hydrological response. Using chronosequences of moraines in two glacial forefields developed from siliceous and calcareous glacial till, the four studies shed light on the complex coevolution of hydrological, biological, and structural hillslope properties, as well as subsurface hydrological flow paths over an evolutionary period of 10 millennia in these two contrasting geologies. The findings indicate that the contrasting properties of siliceous and calcareous parent materials lead to variations in soil structure, permeability, and water storage. As a result, different plant species and vegetation types are favored on siliceous versus calcareous parent material, leading to diverse ecosystems with distinct hydrological dynamics. The siliceous parent material was found to show a higher activity level in driving the coevolution. The soil pH resulting from parent material weathering emerges as a crucial factor, influencing vegetation development, soil formation, and consequently, hydrology. The acidic weathering of the siliceous parent material favored the accumulation of organic matter, increasing the soils' water storage capacity and attracting acid-loving shrubs, which further promoted organic matter accumulation and ultimately led to podsolization after 10 000 years. Tracer experiments revealed that the subsurface flow path evolution was influenced by soil and vegetation development, and vice versa. Subsurface flow paths changed from vertical, heterogeneous matrix flow to finger-like flow paths over a few hundred years, evolving into macropore flow, water storage, and lateral subsurface flow after several thousand years. The changes in flow paths among younger age classes were driven by weathering processes altering soil structure, as well as by vegetation development and root activity. In the older age class, the transition to more water storage and lateral flow was attributed to substantial organic matter accumulation and ongoing podsolization. The rapid vertical water transport in the finger-like flow paths, along with the conductive sandy material, contributed to podsolization and thus to the shift in the hillslope hydrological response. In contrast, the calcareous site possesses a high pH buffering capacity, creating a neutral to basic environment with relatively low accumulation of dead organic matter, resulting in a lower water storage capacity and the establishment of predominantly grass vegetation. The coevolution was found to be less dynamic over the millennia. Similar to the siliceous site, significant changes in subsurface flow paths occurred between the young age classes. However, unlike the siliceous site, the subsurface flow paths at the calcareous site only altered in shape and not in direction. Tracer experiments showed that flow paths changed from vertical, heterogeneous matrix flow to vertical, finger-like flow paths after a few hundred to thousands of years, which was driven by root activities and weathering processes. Despite having a finer soil texture, water storage at the calcareous site was significantly lower than at the siliceous site, and water transport remained primarily rapid and vertical, contributing to the flourishing of grass vegetation. The studies elucidated that changes in flow paths are predominantly shaped by the characteristics of the parent material and its weathering products, along with their complex interactions with initial water flow paths and vegetation development. Time, on the other hand, was not found to be a primary factor in describing the evolution of the hydrological response. This thesis makes a valuable contribution to closing the gap in the observations of the coevolution of hydrological processes within the hillslope feedback cycle, which is important to improve predictions of hydrological processes in changing landscapes. Furthermore, it emphasizes the importance of interdisciplinary studies in addressing the hydrological challenges arising from global change.}, language = {en} }