@phdthesis{Nguyen2019, author = {Nguyen, Quyet Doan}, title = {Electro-acoustical probing of space-charge and dipole-polarization profiles in polymer dielectrics for electret and electrical-insulation applications}, doi = {10.25932/publishup-44562}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445629}, school = {Universit{\"a}t Potsdam}, pages = {105}, year = {2019}, abstract = {Electrets are dielectrics with quasi-permanent electric charge and/or dipoles, sometimes can be regarded as an electric analogy to a magnet. Since the discovery of the excellent charge retention capacity of poly(tetrafluoro ethylene) and the invention of the electret microphone, electrets have grown out of a scientific curiosity to an important application both in science and technology. The history of electret research goes hand in hand with the quest for new materials with better capacity at charge and/or dipole retention. To be useful, electrets normally have to be charged/poled to render them electro-active. This process involves electric-charge deposition and/or electric dipole orientation within the dielectrics ` surfaces and bulk. Knowledge of the spatial distribution of electric charge and/or dipole polarization after their deposition and subsequent decay is crucial in the task to improve their stability in the dielectrics. Likewise, for dielectrics used in electrical insulation applications, there are also needs for accumulated space-charge and polarization spatial profiling. Traditionally, space-charge accumulation and large dipole polarization within insulating dielectrics is considered undesirable and harmful to the insulating dielectrics as they might cause dielectric loss and could lead to internal electric field distortion and local field enhancement. High local electric field could trigger several aging processes and reduce the insulating dielectrics' lifetime. However, with the advent of high-voltage DC transmission and high-voltage capacitor for energy storage, these are no longer the case. There are some overlapped between the two fields of electrets and electric insulation. While quasi-permanently trapped electric-charge and/or large remanent dipole polarization are the requisites for electret operation, stably trapped electric charge in electric insulation helps reduce electric charge transport and overall reduced electric conductivity. Controlled charge trapping can help in preventing further charge injection and accumulation as well as serving as field grading purpose in insulating dielectrics whereas large dipole polarization can be utilized in energy storage applications. In this thesis, the Piezoelectrically-generated Pressure Steps (PPSs) were employed as a nondestructive method to probe the electric-charge and dipole polarization distribution in a range of thin film (several hundred micron) polymer-based materials, namely polypropylene (PP), low-density polyethylene/magnesium oxide (LDPE/MgO) nanocomposites and poly(vinylidene fluoride-co- trifluoro ethylene) (P(VDF-TrFE)) copolymer. PP film surface-treated with phosphoric acid to introduce surfacial isolated nanostructures serves as example of 2-dimensional nano-composites whereas LDPE/MgO serves as the case of 3-dimensional nano-composites with MgO nano-particles dispersed in LDPE polymer matrix. It is evidenced that the nanoparticles on the surface of acid-treated PP and in the bulk of LDPE/MgO nanocomposites improve charge trapping capacity of the respective material and prevent further charge injection and transport and that the enhanced charge trapping capacity makes PP and LDPE/MgO nanocomposites potential materials for both electret and electrical insulation applications. As for PVDF and VDF-based copolymers, the remanent spatial polarization distribution depends critically on poling method as well as specific parameters used in the respective poling method. In this work, homogeneous polarization poling of P(VDF-TrFE) copolymers with different VDF-contents have been attempted with hysteresis cyclical poling. The behaviour of remanent polarization growth and spatial polarization distribution are reported and discussed. The Piezoelectrically-generated Pressure Steps (PPSs) method has proven as a powerful method for the charge storage and transport characterization of a wide range of polymer material from nonpolar, to polar, to polymer nanocomposites category.}, language = {en} } @phdthesis{FloresSuarez2011, author = {Flores Su{\´a}rez, Rosaura}, title = {Three-dimensional polarization probing in polymer ferroelectrics, polymer-dispersed liquid crystals, and polymer ferroelectrets}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60173}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {A key non-destructive technique for analysis, optimization and developing of new functional materials such as sensors, transducers, electro-optical and memory devices is presented. The Thermal-Pulse Tomography (TPT) provides high-resolution three-dimensional images of electric field and polarization distribution in a material. This thermal technique use a pulsed heating by means of focused laser light which is absorbed by opaque electrodes. The diffusion of the heat causes changes in the sample geometry, generating a short-circuit current or change in surface potential, which contains information about the spatial distribution of electric dipoles or space charges. Afterwards, a reconstruction of the internal electric field and polarization distribution in the material is possible via Scale Transformation or Regularization methods. In this way, the TPT was used for the first time to image the inhomogeneous ferroelectric switching in polymer ferroelectric films (candidates to memory devices). The results shows the typical pinning of electric dipoles in the ferroelectric polymer under study and support the previous hypotheses of a ferroelectric reversal at a grain level via nucleation and growth. In order to obtain more information about the impact of the lateral and depth resolution of the thermal techniques, the TPT and its counterpart called Focused Laser Intensity Modulation Method (FLIMM) were implemented in ferroelectric films with grid-shaped electrodes. The results from both techniques, after the data analysis with different regularization and scale methods, are in total agreement. It was also revealed a possible overestimated lateral resolution of the FLIMM and highlights the TPT method as the most efficient and reliable thermal technique. After an improvement in the optics, the Thermal-Pulse Tomography method was implemented in polymer-dispersed liquid crystals (PDLCs) films, which are used in electro-optical applications. The results indicated a possible electrostatic interaction between the COH group in the liquid crystals and the fluorinate atoms of the used ferroelectric matrix. The geometrical parameters of the LC droplets were partially reproduced as they were compared with Scanning Electron Microscopy (SEM) images. For further applications, it is suggested the use of a non-strong-ferroelectric polymer matrix. In an effort to develop new polymerferroelectrets and for optimizing their properties, new multilayer systems were inspected. The results of the TPT method showed the non-uniformity of the internal electric-field distribution in the shaped-macrodipoles and thus suggested the instability of the sample. Further investigation on multilayers ferroelectrets was suggested and the implementation of less conductive polymers layers too.}, language = {en} }