@phdthesis{Ibarra2021, author = {Ibarra, Federico}, title = {The thermal and rheological state of the Central Andes and its relationship to active deformation processes}, doi = {10.25932/publishup-50622}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-506226}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 149}, year = {2021}, abstract = {The Central Andes region in South America is characterized by a complex and heterogeneous deformation system. Recorded seismic activity and mapped neotectonic structures indicate that most of the intraplate deformation is located along the margins of the orogen, in the transitions to the foreland and the forearc. Furthermore, the actively deforming provinces of the foreland exhibit distinct deformation styles that vary along strike, as well as characteristic distributions of seismicity with depth. The style of deformation transitions from thin-skinned in the north to thick-skinned in the south, and the thickness of the seismogenic layer increases to the south. Based on geological/geophysical observations and numerical modelling, the most commonly invoked causes for the observed heterogeneity are the variations in sediment thickness and composition, the presence of inherited structures, and changes in the dip of the subducting Nazca plate. However, there are still no comprehensive investigations on the relationship between the lithospheric composition of the Central Andes, its rheological state and the observed deformation processes. The central aim of this dissertation is therefore to explore the link between the nature of the lithosphere in the region and the location of active deformation. The study of the lithospheric composition by means of independent-data integration establishes a strong base to assess the thermal and rheological state of the Central Andes and its adjacent lowlands, which alternatively provide new foundations to understand the complex deformation of the region. In this line, the general workflow of the dissertation consists in the construction of a 3D data-derived and gravity-constrained density model of the Central Andean lithosphere, followed by the simulation of the steady-state conductive thermal field and the calculation of strength distribution. Additionally, the dynamic response of the orogen-foreland system to intraplate compression is evaluated by means of 3D geodynamic modelling. The results of the modelling approach suggest that the inherited heterogeneous composition of the lithosphere controls the present-day thermal and rheological state of the Central Andes, which in turn influence the location and depth of active deformation processes. Most of the seismic activity and neo--tectonic structures are spatially correlated to regions of modelled high strength gradients, in the transition from the felsic, hot and weak orogenic lithosphere to the more mafic, cooler and stronger lithosphere beneath the forearc and the foreland. Moreover, the results of the dynamic simulation show a strong localization of deviatoric strain rate second invariants in the same region suggesting that shortening is accommodated at the transition zones between weak and strong domains. The vertical distribution of seismic activity appears to be influenced by the rheological state of the lithosphere as well. The depth at which the frequency distribution of hypocenters starts to decrease in the different morphotectonic units correlates with the position of the modelled brittle-ductile transitions; accordingly, a fraction of the seismic activity is located within the ductile part of the crust. An exhaustive analysis shows that practically all the seismicity in the region is restricted above the 600°C isotherm, in coincidence with the upper temperature limit for brittle behavior of olivine. Therefore, the occurrence of earthquakes below the modelled brittle-ductile could be explained by the presence of strong residual mafic rocks from past tectonic events. Another potential cause of deep earthquakes is the existence of inherited shear zones in which brittle behavior is favored through a decrease in the friction coefficient. This hypothesis is particularly suitable for the broken foreland provinces of the Santa Barbara System and the Pampean Ranges, where geological studies indicate successive reactivation of structures through time. Particularly in the Santa Barbara System, the results indicate that both mafic rocks and a reduction in friction are required to account for the observed deep seismic events.}, language = {en} } @phdthesis{Meessen2019, author = {Meeßen, Christian}, title = {The thermal and rheological state of the Northern Argentinian foreland basins}, doi = {10.25932/publishup-43994}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439945}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 151}, year = {2019}, abstract = {The foreland of the Andes in South America is characterised by distinct along strike changes in surface deformational styles. These styles are classified into two end-members, the thin-skinned and the thick-skinned style. The superficial expression of thin-skinned deformation is a succession of narrowly spaced hills and valleys, that form laterally continuous ranges on the foreland facing side of the orogen. Each of the hills is defined by a reverse fault that roots in a basal d{\´e}collement surface within the sedimentary cover, and acted as thrusting ramp to stack the sedimentary pile. Thick-skinned deformation is morphologically characterised by spatially disparate, basement-cored mountain ranges. These mountain ranges are uplifted along reactivated high-angle crustal-scale discontinuities, such as suture zones between different tectonic terranes. Amongst proposed causes for the observed variation are variations in the dip angle of the Nazca plate, variation in sediment thickness, lithospheric thickening, volcanism or compositional differences. The proposed mechanisms are predominantly based on geological observations or numerical thermomechanical modelling, but there has been no attempt to understand the mechanisms from a point of data-integrative 3D modelling. The aim of this dissertation is therefore to understand how lithospheric structure controls the deformational behaviour. The integration of independent data into a consistent model of the lithosphere allows to obtain additional evidence that helps to understand the causes for the different deformational styles. Northern Argentina encompasses the transition from the thin-skinned fold-and-thrust belt in Bolivia, to the thick-skinned Sierras Pampeanas province, which makes this area a well suited location for such a study. The general workflow followed in this study first involves data-constrained structural- and density-modelling in order to obtain a model of the study area. This model was then used to predict the steady-state thermal field, which was then used to assess the present-day rheological state in northern Argentina. The structural configuration of the lithosphere in northern Argentina was determined by means of data-integrative, 3D density modelling verified by Bouguer gravity. The model delineates the first-order density contrasts in the lithosphere in the uppermost 200 km, and discriminates bodies for the sediments, the crystalline crust, the lithospheric mantle and the subducting Nazca plate. To obtain the intra-crustal density structure, an automated inversion approach was developed and applied to a starting structural model that assumed a homogeneously dense crust. The resulting final structural model indicates that the crustal structure can be represented by an upper crust with a density of 2800 kg/m³, and a lower crust of 3100 kg/m³. The Transbrazilian Lineament, which separates the Pampia terrane from the R{\´i}o de la Plata craton, is expressed as a zone of low average crustal densities. In an excursion, we demonstrate in another study, that the gravity inversion method developed to obtain intra-crustal density structures, is also applicable to obtain density variations in the uppermost lithospheric mantle. Densities in such sub-crustal depths are difficult to constrain from seismic tomographic models due to smearing of crustal velocities. With the application to the uppermost lithospheric mantle in the north Atlantic, we demonstrate in Tan et al. (2018) that lateral density trends of at least 125\,km width are robustly recovered by the inversion method, thereby providing an important tool for the delineation of subcrustal density trends. Due to the genetic link between subduction, orogenesis and retroarc foreland basins the question rises whether the steady-state assumption is valid in such a dynamic setting. To answer this question, I analysed (i) the impact of subduction on the conductive thermal field of the overlying continental plate, (ii) the differences between the transient and steady-state thermal fields of a geodynamic coupled model. Both studies indicate that the assumption of a thermal steady-state is applicable in most parts of the study area. Within the orogenic wedge, where the assumption cannot be applied, I estimated the transient thermal field based on the results of the conducted analyses. Accordingly, the structural model that had been obtained in the first step, could be used to obtain a 3D conductive steady-state thermal field. The rheological assessment based on this thermal field indicates that the lithosphere of the thin-skinned Subandean ranges is characterised by a relatively strong crust and a weak mantle. Contrarily, the adjacent foreland basin consists of a fully coupled, very strong lithosphere. Thus, shortening in northern Argentina can only be accommodated within the weak lithosphere of the orogen and the Subandean ranges. The analysis suggests that the d{\´e}collements of the fold-and-thrust belt are the shallow continuation of shear zones that reside in the ductile sections of the orogenic crust. Furthermore, the localisation of the faults that provide strain transfer between the deeper ductile crust and the shallower d{\´e}collement is strongly influenced by crustal weak zones such as foliation. In contrast to the northern foreland, the lithosphere of the thick-skinned Sierras Pampeanas is fully coupled and characterised by a strong crust and mantle. The high overall strength prevents the generation of crustal-scale faults by tectonic stresses. Even inherited crustal-scale discontinuities, such as sutures, cannot sufficiently reduce the strength of the lithosphere in order to be reactivated. Therefore, magmatism that had been identified to be a precursor of basement uplift in the Sierras Pampeanas, is the key factor that leads to the broken foreland of this province. Due to thermal weakening, and potentially lubrication of the inherited discontinuities, the lithosphere is locally weakened such that tectonic stresses can uplift the basement blocks. This hypothesis explains both the spatially disparate character of the broken foreland, as well as the observed temporal delay between volcanism and basement block uplift. This dissertation provides for the first time a data-driven 3D model that is consistent with geophysical data and geological observations, and that is able to causally link the thermo-rheological structure of the lithosphere to the observed variation of surface deformation styles in the retroarc foreland of northern Argentina.}, language = {en} }