@misc{WinkelbeinerWandtEbertetal.2020, author = {Winkelbeiner, Nicola Lisa and Wandt, Viktoria Klara Veronika and Ebert, Franziska and Lossow, Kristina and Bankoglu, Ezgi E. and Martin, Maximilian and Mangerich, Aswin and Stopper, Helga and Bornhorst, Julia and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {A Multi-Endpoint Approach to Base Excision Repair Incision Activity Augmented by PARylation and DNA Damage Levels in Mice}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1021}, issn = {1866-8372}, doi = {10.25932/publishup-48483}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-484831}, pages = {21}, year = {2020}, abstract = {Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2'-deoxyguanosine (8-oxodG), 5-hydroxy-2'-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery.}, language = {en} } @misc{MeyerRaberEbertetal.2015, author = {Meyer, S. and Raber, G. and Ebert, Franziska and Leffers, L. and M{\"u}ller, Sandra Marie and Taleshi, M. S. and Francesconi, Kevin A. and Schwerdtle, Tanja}, title = {In vitro toxicological characterisation of arsenic-containing fatty acids and three of their metabolites}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82008}, year = {2015}, abstract = {Arsenic-containing fatty acids are a group of fat-soluble arsenic species (arsenolipids) which are present in marine fish and other seafood. Recently, it has been shown that arsenic-containing hydrocarbons, another group of arsenolipids, exert toxicity in similar concentrations comparable to arsenite although the toxic modes of action differ. Hence, a risk assessment of arsenolipids is urgently needed. In this study the cellular toxicity of a saturated (AsFA 362) and an unsaturated (AsFA 388) arsenic-containing fatty acid and three of their proposed metabolites (DMAV, DMAPr and thio-DMAPr) were investigated in human liver cells (HepG2). Even though both arsenic-containing fatty acids were less toxic as compared to arsenic-containing hydrocarbons and arsenite, significant effects were observable at μM concentrations. DMAV causes effects in a similar concentration range and it could be seen that it is metabolised to its highly toxic thio analogue thio-DMAV in HepG2 cells. Nevertheless, DMAPr and thio-DMAPr did not exert any cytotoxicity. In summary, our data indicate that risks to human health related to the presence of arsenic-containing fatty acids in marine food cannot be excluded. This stresses the need for a full in vitro and in vivo toxicological characterisation of these arsenolipids.}, language = {en} } @misc{MeyerMatissekMuelleretal.2014, author = {Meyer, S{\"o}ren and Matissek, M. and M{\"u}ller, Sandra Marie and Taleshi, M. S. and Ebert, Franziska and Francesconi, Kevin A. and Schwerdtle, Tanja}, title = {In vitro toxicological characterisation of three arsenic-containing hydrocarbons}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74201}, pages = {1023 -- 1033}, year = {2014}, abstract = {Arsenic-containing hydrocarbons are one group of fat-soluble organic arsenic compounds (arsenolipids) found in marine fish and other seafood. A risk assessment of arsenolipids is urgently needed, but has not been possible because of the total lack of toxicological data. In this study the cellular toxicity of three arsenic-containing hydrocarbons was investigated in cultured human bladder (UROtsa) and liver (HepG2) cells. Cytotoxicity of the arsenic-containing hydrocarbons was comparable to that of arsenite, which was applied as the toxic reference arsenical. A large cellular accumulation of arsenic, as measured by ICP-MS/MS, was observed after incubation of both cell lines with the arsenolipids. Moreover, the toxic mode of action shown by the three arsenic-containing hydrocarbons seemed to differ from that observed for arsenite. Evidence suggests that the high cytotoxic potential of the lipophilic arsenicals results from a decrease in the cellular energy level. This first in vitro based risk assessment cannot exclude a risk to human health related to the presence of arsenolipids in seafood, and indicates the urgent need for further toxicity studies in experimental animals to fully assess this possible risk.}, language = {en} } @misc{UnterbergLeffersHuebneretal.2014, author = {Unterberg, Marlies and Leffers, Larissa and H{\"u}bner, Florian and Humpf, Hans-Ulrich and Lepikhov, Konstantin and Walter, J{\"o}rn and Ebert, Franziska and Schwerdtle, Tanja}, title = {Toxicity of arsenite and thio-DMAV after long-term (21 days) incubation of human urothelial cells: cytotoxicity, genotoxicity and epigenetics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76239}, pages = {456 -- 464}, year = {2014}, abstract = {This study aims to further mechanistically understand toxic modes of action after chronic inorganic arsenic exposure. Therefore long-term incubation studies in cultured cells were carried out, to display chronically attained changes, which cannot be observed in the generally applied in vitro short-term incubation studies. Particularly, the cytotoxic, genotoxic and epigenetic effects of an up to 21 days incubation of human urothelial (UROtsa) cells with pico- to nanomolar concentrations of iAsIII and its metabolite thio-DMAV were compared. After 21 days of incubation, cytotoxic effects were strongly enhanced in the case of iAsIII and might partly be due to glutathione depletion and genotoxic effects on the chromosomal level. These results are in strong contrast to cells exposed to thio-DMAV. Thus, cells seemed to be able to adapt to this arsenical, as indicated among others by an increase in the cellular glutathione level. Most interestingly, picomolar concentrations of both iAsIII and thio-DMAV caused global DNA hypomethylation in UROtsa cells, which was quantified in parallel by 5-medC immunostaining and a newly established, reliable, high resolution mass spectrometry (HRMS)-based test system. This is the first time that epigenetic effects are reported for thio-DMAV; iAsIII induced epigenetic effects occur in at least 8000 fold lower concentrations as reported in vitro before. The fact that both arsenicals cause DNA hypomethylation at really low, exposure-relevant concentrations in human urothelial cells suggests that this epigenetic effect might contribute to inorganic arsenic induced carcinogenicity, which for sure has to be further investigated in future studies.}, language = {en} } @misc{PieperWeheBornhorstetal.2014, author = {Pieper, Imke and Wehe, Christoph A. and Bornhorst, Julia and Ebert, Franziska and Leffers, Larissa and Holtkamp, Michael and H{\"o}seler, Pia and Weber, Till and Mangerich, Aswin and B{\"u}rkle, Alexander and Karst, Uwe and Schwerdtle, Tanja}, title = {Mechanisms of Hg species induced toxicity in cultured human astrocytes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74379}, pages = {662 -- 671}, year = {2014}, abstract = {The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co- genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl) ation contributes to organic Hg induced neurotoxicity.}, language = {en} } @misc{MeyerSchulzJeibmannetal.2014, author = {Meyer, S{\"o}ren and Schulz, Jacqueline and Jeibmann, Astrid and Taleshi, Mojtaba S. and Ebert, Franziska and Francesconi, Kevin and Schwerdtle, Tanja}, title = {Arsenic-containing hydrocarbons are toxic in the in vivo model Drosophila melanogaster}, volume = {11}, number = {6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76819}, pages = {2010 -- 2014}, year = {2014}, abstract = {Arsenic-containing hydrocarbons (AsHC) constitute one group of arsenolipids that have been identified in seafood. In this first in vivo toxicity study for AsHCs, we show that AsHCs exert toxic effects in Drosophila melanogaster in a concentration range similar to that of arsenite. In contrast to arsenite, however, AsHCs cause developmental toxicity in the late developmental stages of Drosophila melanogaster. This work illustrates the need for a full characterisation of the toxicity of AsHCs in experimental animals to finally assess the risk to human health related to the presence of arsenolipids in seafood.}, language = {en} }