@article{FerTietjenJeltschetal.2017, author = {Fer, Istem and Tietjen, Britta and Jeltsch, Florian and Wolff, Christian Michael}, title = {The influence of El Nino-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-4355-2017}, pages = {4355 -- 4374}, year = {2017}, abstract = {The El Nino-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.}, language = {en} } @article{BoessenkoolBuergerHeistermann2017, author = {B{\"o}ssenkool, Berry and B{\"u}rger, Gerd and Heistermann, Maik}, title = {Effects of sample size on estimation of rainfall extremes at high temperatures}, series = {Natural hazards and earth system sciences}, volume = {17}, journal = {Natural hazards and earth system sciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-17-1623-2017}, pages = {1623 -- 1629}, year = {2017}, abstract = {High precipitation quantiles tend to rise with temperature, following the so-called Clausius-Clapeyron (CC) scaling. It is often reported that the CC-scaling relation breaks down and even reverts for very high temperatures. In our study, we investigate this reversal using observational climate data from 142 stations across Germany. One of the suggested meteorological explanations for the breakdown is limited moisture supply. Here we argue that, instead, it could simply originate from undersampling. As rainfall frequency generally decreases with higher temperatures, rainfall intensities as dictated by CC scaling are less likely to be recorded than for moderate temperatures. Empirical quantiles are conventionally estimated from order statistics via various forms of plotting position formulas. They have in common that their largest representable return period is given by the sample size. In small samples, high quantiles are underestimated accordingly. The small-sample effect is weaker, or disappears completely, when using parametric quantile estimates from a generalized Pareto distribution (GPD) fitted with L moments. For those, we obtain quantiles of rainfall intensities that continue to rise with temperature.}, language = {en} } @article{SierLangereisDupontNivetetal.2017, author = {Sier, Mark J. and Langereis, Cor G. and Dupont-Nivet, Guillaume and Feibel, Craig S. and Joordens, Josephine C. A. and van der Lubbe, Jeroen Fiji. and Beck, Catherine C. and Olago, Daniel and Cohen, Andrew}, title = {The top of the Olduvai Subchron in a high-resolution magnetostratigraphy from the West Turkana core WTK13, hominin sites and Paleolakes Drilling Project (HSPDP)}, series = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, volume = {42}, journal = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, publisher = {Elsevier}, address = {Oxford}, organization = {WTK Science Team Members}, issn = {1871-1014}, doi = {10.1016/j.quageo.2017.08.004}, pages = {117 -- 129}, year = {2017}, abstract = {One of the major challenges in understanding the evolution of our own species is identifying the role climate change has played in the evolution of hominin species. To clarify the influence of climate, we need long and continuous high-resolution paleoclimate records, preferably obtained from hominin-bearing sediments, that are well-dated by tephro- and magnetostratigraphy and other methods. This is hindered, however, by the fact that fossil-bearing outcrop sediments are often discontinuous, and subject to weathering, which may lead to oxidation and remagnetization. To obtain fresh, unweathered sediments, the Hominin Sites and Paleolakes Drilling Project (HSPDP) collected a \&\#8764;216-meter core (WTK13) in 2013 from Early Pleistocene Paleolake Lorenyang deposits in the western Turkana Basin (Kenya). Here, we present the magnetostratigraphy of the WTK13 core, providing a first age model for upcoming HSPDP paleoclimate and paleoenvrionmental studies on the core sediments. Rock magnetic analyses reveal the presence of iron sulfides carrying the remanent magnetizations. To recover polarity orientation from the near-equatorial WTK13 core drilled at 5°N, we developed and successfully applied two independent drill-core reorientation methods taking advantage of (1) the sedimentary fabric as expressed in the Anisotropy of Magnetic Susceptibility (AMS) and (2) the occurrence of a viscous component oriented in the present day field. The reoriented directions reveal a normal to reversed polarity reversal identified as the top of the Olduvai Subchron. From this excellent record, we find no evidence for the 'Vrica Subchron' previously reported in the area. We suggest that outcrop-based interpretations supporting the presence of the Vrica Subchron have been affected by the oxidation of iron sulfides initially present in the sediments -as evident in the core record- and by subsequent remagnetization. We discuss the implications of the observed geomagnetic record for human evolution studies.}, language = {en} } @misc{KnapmeyerEndrunGolombekOhrnberger2017, author = {Knapmeyer-Endrun, Brigitte and Golombek, Matthew P. and Ohrnberger, Matthias}, title = {Rayleigh Wave Ellipticity Modeling and Inversion for Shallow Structure at the Proposed InSight Landing Site in Elysium Planitia, Mars}, series = {Space science reviews}, volume = {211}, journal = {Space science reviews}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-016-0300-1}, pages = {339 -- 382}, year = {2017}, abstract = {The SEIS (Seismic Experiment for Interior Structure) instrument onboard the InSight mission will be the first seismometer directly deployed on the surface of Mars. From studies on the Earth and the Moon, it is well known that site amplification in low-velocity sediments on top of more competent rocks has a strong influence on seismic signals, but can also be used to constrain the subsurface structure. Here we simulate ambient vibration wavefields in a model of the shallow sub-surface at the InSight landing site in Elysium Planitia and demonstrate how the high-frequency Rayleigh wave ellipticity can be extracted from these data and inverted for shallow structure. We find that, depending on model parameters, higher mode ellipticity information can be extracted from single-station data, which significantly reduces uncertainties in inversion. Though the data are most sensitive to properties of the upper-most layer and show a strong trade-off between layer depth and velocity, it is possible to estimate the velocity and thickness of the sub-regolith layer by using reasonable constraints on regolith properties. Model parameters are best constrained if either higher mode data can be used or additional constraints on regolith properties from seismic analysis of the hammer strokes of InSight's heat flow probe HP3 are available. In addition, the Rayleigh wave ellipticity can distinguish between models with a constant regolith velocity and models with a velocity increase in the regolith, information which is difficult to obtain otherwise.}, language = {en} } @article{BeniniCapoferriDappiaggi2017, author = {Benini, Marco and Capoferri, Matteo and Dappiaggi, Claudio}, title = {Hadamard States for Quantum Abelian Duality}, series = {Annales de l'Institut Henri Poincar{\´e}}, volume = {18}, journal = {Annales de l'Institut Henri Poincar{\´e}}, publisher = {Springer}, address = {Basel}, issn = {1424-0637}, doi = {10.1007/s00023-017-0593-y}, pages = {3325 -- 3370}, year = {2017}, abstract = {Abelian duality is realized naturally by combining differential cohomology and locally covariant quantum field theory. This leads to a -algebra of observables, which encompasses the simultaneous discretization of both magnetic and electric fluxes. We discuss the assignment of physically well-behaved states on this algebra and the properties of the associated GNS triple. We show that the algebra of observables factorizes as a suitable tensor product of three -algebras: the first factor encodes dynamical information, while the other two capture topological data corresponding to electric and magnetic fluxes. On the former factor and in the case of ultra-static globally hyperbolic spacetimes with compact Cauchy surfaces, we exhibit a state whose two-point correlation function has the same singular structure of a Hadamard state. Specifying suitable counterparts also on the topological factors, we obtain a state for the full theory, ultimately implementing Abelian duality transformations as Hilbert space isomorphisms.}, language = {en} } @article{Goychuk2017, author = {Goychuk, Igor}, title = {Fractional Bhatnagar-Gross-Krook kinetic equation}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {90}, journal = {The European physical journal : B, Condensed matter and complex systems}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2017-80297-x}, pages = {13}, year = {2017}, abstract = {The linear Boltzmann equation approach is generalized to describe fractional superdiffusive transport of the Levy walk type in external force fields. The time distribution between scattering events is assumed to have a finite mean value and infinite variance. It is completely characterized by the two scattering rates, one fractional and a normal one, which defines also the mean scattering rate. We formulate a general fractional linear Boltzmann equation approach and exemplify it with a particularly simple case of the Bohm and Gross scattering integral leading to a fractional generalization of the Bhatnagar, Gross and Krook kinetic equation. Here, at each scattering event the particle velocity is completely randomized and takes a value from equilibrium Maxwell distribution at a given fixed temperature. We show that the retardation effects are indispensable even in the limit of infinite mean scattering rate and argue that this novel fractional kinetic equation provides a viable alternative to the fractional Kramers-Fokker-Planck (KFP) equation by Barkai and Silbey and its generalization by Friedrich et al. based on the picture of divergent mean time between scattering events. The case of divergent mean time is also discussed at length and compared with the earlier results obtained within the fractional KFP. Also a phenomenological fractional BGK equation without retardation effects is proposed in the limit of infinite scattering rates. It cannot be, however, rigorously derived from a scattering model, being rather clever postulated. It this respect, this retardationless equation is similar to the fractional KFP by Barkai and Silbey. However, it corresponds to the opposite, much more physical limit and, therefore, also presents a viable alternative.}, language = {en} } @article{BaumbachSiegmundMittermeieretal.2017, author = {Baumbach, Lukas and Siegmund, Jonatan F. and Mittermeier, Magdalena and Donner, Reik Volker}, title = {Impacts of temperature extremes on European vegetation during the growing season}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-4891-2017}, pages = {4891 -- 4903}, year = {2017}, abstract = {Temperature is a key factor controlling plant growth and vitality in the temperate climates of the mid-latitudes like in vast parts of the European continent. Beyond the effect of average conditions, the timings and magnitudes of temperature extremes play a particularly crucial role, which needs to be better understood in the context of projected future rises in the frequency and/or intensity of such events. In this work, we employ event coincidence analysis (ECA) to quantify the likelihood of simultaneous occurrences of extremes in daytime land surface temperature anomalies (LSTAD) and the normalized difference vegetation index (NDVI). We perform this analysis for entire Europe based upon remote sensing data, differentiating between three periods corresponding to different stages of plant development during the growing season. In addition, we analyze the typical elevation and land cover type of the regions showing significantly large event coincidences rates to identify the most severely affected vegetation types. Our results reveal distinct spatio-temporal impact patterns in terms of extraordinarily large co-occurrence rates between several combinations of temperature and NDVI extremes. Croplands are among the most frequently affected land cover types, while elevation is found to have only a minor effect on the spatial distribution of corresponding extreme weather impacts. These findings provide important insights into the vulnerability of European terrestrial ecosystems to extreme temperature events and demonstrate how event-based statistics like ECA can provide a valuable perspective on environmental nexuses.}, language = {en} } @article{MajdaGronesSintornetal.2017, author = {Majda, Mateusz and Grones, Peter and Sintorn, Ida-Maria and Vain, Thomas and Milani, Pascale and Krupinski, Pawel and Zagorska-Marek, Beata and Viotti, Corrado and Jonsson, Henrik and Mellerowicz, Ewa J. and Hamant, Olivier and Robert, Stephanie}, title = {Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells}, series = {Developmental cell}, volume = {43}, journal = {Developmental cell}, publisher = {Cell Press}, address = {Cambridge}, issn = {1534-5807}, doi = {10.1016/j.devcel.2017.10.017}, pages = {290 -- +}, year = {2017}, abstract = {The epidermis of aerial plant organs is thought to be limiting for growth, because it acts as a continuous load-bearing layer, resisting tension. Leaf epidermis contains jigsaw puzzle piece-shaped pavement cells whose shape has been proposed to be a result of subcellular variations in expansion rate that induce local buckling events. Paradoxically, such local compressive buckling should not occur given the tensile stresses across the epidermis. Using computational modeling, we show that the simplest scenario to explain pavement cell shapes within an epidermis under tension must involve mechanical wall heterogeneities across and along the anticlinal pavement cell walls between adjacent cells. Combining genetics, atomic force microscopy, and immunolabeling, we demonstrate that contiguous cell walls indeed exhibit hybrid mechanochemical properties. Such biochemical wall heterogeneities precede wall bending. Altogether, this provides a possible mechanism for the generation of complex plant cell shapes.}, language = {en} } @article{KurzeHeinkenFartmann2017, author = {Kurze, Susanne and Heinken, Thilo and Fartmann, Thomas}, title = {Nitrogen enrichment of host plants has mostly beneficial effects on the life-history traits of nettle-feeding butterflies}, series = {Acta oecologica : international journal of ecology}, volume = {85}, journal = {Acta oecologica : international journal of ecology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1146-609X}, doi = {10.1016/j.actao.2017.11.005}, pages = {157 -- 164}, year = {2017}, abstract = {Butterflies rank among the most threatened animal groups throughout Europe. However, current population trends differ among species. The nettle-feeding butterflies Aglais io and Aglais urticae cope successfully with the anthropogenic land-use change. Both species are assumed to be pre-adapted to higher nitrogen contents in their host plant, stinging nettle (Urtica dioica). However, it is currently unknown, whether this pre-adaptation enables both Aglais species to cope successfully or even to benefit from the excessive nitrogen availabilities in nettles growing in modern farmlands. For this reason, this study focused on the response of both Aglais species to unfertilized nettles compared to nettles receiving 150 or 300 kg N ha(-1) yr(-1) (i.e., common fertilizer quantities of modern-day agriculture). Fertilized nettles were characterized by higher nitrogen concentrations and lower C:N ratios compared to the control group. In both Aglais species, the individuals feeding on fertilized nettles had higher survival rates, shorter larval periods and heavier pupae and, in A. urticae also longer forewings. All these trait shifts are beneficial for the individuals, lowering their risk to die before reproduction and increasing their reproductive potential. These responses agree with the well-accepted nitrogen-limitation hypothesis predicting a positive relationship between the nitrogen content of the diet and the performance of herbivorous insects. Furthermore, our findings suggest that the increasing abundance of both Aglais species may result not only from the increasing spread of nettles into the farmland but also from changes in their quality due to the eutrophication of the landscape during recent decades.}, language = {en} } @article{DelleSideNassisiPennettaetal.2017, author = {Delle Side, Domenico and Nassisi, Vincenzo and Pennetta, Cecilia and Alifano, Pietro and Di Salvo, Marco and Tala, Adelfia and Chechkin, Aleksei V. and Seno, Flavio and Trovato, Antonio}, title = {Bacterial bioluminescence onset and quenching: a dynamical model for a quorum sensing-mediated property}, series = {Royal Society Open Science}, volume = {4}, journal = {Royal Society Open Science}, publisher = {Royal Society}, address = {London}, issn = {2054-5703}, doi = {10.1098/rsos.171586}, pages = {12}, year = {2017}, abstract = {We present an effective dynamical model for the onset of bacterial bioluminescence, one of the most studied quorum sensing-mediated traits. Our model is built upon simple equations that describe the growth of the bacterial colony, the production and accumulation of autoinducer signal molecules, their sensing within bacterial cells, and the ensuing quorum activation mechanism that triggers bioluminescent emission. The model is directly tested to quantitatively reproduce the experimental distributions of photon emission times, previously measured for bacterial colonies of Vibrio jasicida, a luminescent bacterium belonging to the Harveyi clade, growing in a highly drying environment. A distinctive and novel feature of the proposed model is bioluminescence 'quenching' after a given time elapsed from activation. Using an advanced fitting procedure based on the simulated annealing algorithm, we are able to infer from the experimental observations the biochemical parameters used in the model. Such parameters are in good agreement with the literature data. As a further result, we find that, at least in our experimental conditions, light emission in bioluminescent bacteria appears to originate from a subtle balance between colony growth and quorum activation due to autoinducers diffusion, with the two phenomena occurring on the same time scale. This finding is consistent with a negative feedback mechanism previously reported for Vibrio harveyi.}, language = {en} }