@article{ReilImholtRosenfeldetal.2017, author = {Reil, Daniela and Imholt, Christian and Rosenfeld, Ulrike M. and Drewes, Stephan and Fischer, S. and Heuser, Emil and Petraityte-Burneikiene, Rasa and Ulrich, R. G. and Jacob, J.}, title = {Validation of the Puumala virus rapid field test for bank voles in Germany}, series = {Epidemiology and infection}, volume = {145}, journal = {Epidemiology and infection}, number = {3}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0950-2688}, doi = {10.1017/S0950268816002557}, pages = {434 -- 439}, year = {2017}, abstract = {Puumala virus (PUUV) causes many human infections in large parts of Europe and can lead to mild to moderate disease. The bank vole (Myodes glareolus) is the only reservoir of PUUV in Central Europe. A commercial PUUV rapid field test for rodents was validated for bank-vole blood samples collected in two PUUV-endemic regions in Germany (North Rhine-Westphalia and Baden-Wurttemberg). A comparison of the results of the rapid field test and standard ELISAs indicated a test efficacy of 93-95\%, largely independent of the origin of the antigens used in the ELISA. In ELISAs, reactivity for the German PUUV strain was higher compared to the Swedish strain but not compared to the Finnish strain, which was used for the rapid field test. In conclusion, the use of the rapid field test can facilitate short-term estimation of PUUV seroprevalence in bank-vole populations in Germany and can aid in assessing human PUUV infection risk.}, language = {en} } @article{MarquerGaillardSugitaetal.2017, author = {Marquer, Laurent and Gaillard, Marie-Jose and Sugita, Shinya and Poska, Anneli and Trondman, Anna-Kari and Mazier, Florence and Nielsen, Anne Birgitte and Fyfe, Ralph M. and Jonsson, Anna Maria and Smith, Benjamin and Kaplan, Jed O. and Alenius, Teija and Birks, H. John B. and Bjune, Anne E. and Christiansen, Jorg and Dodson, John and Edwards, Kevin J. and Giesecke, Thomas and Herzschuh, Ulrike and Kangur, Mihkel and Koff, Tiiu and Latalowa, Maligorzata and Lechterbeck, Jutta and Olofsson, Jorgen and Seppa, Heikki}, title = {Quantifying the effects of land use and climate on Holocene vegetation in Europe}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {171}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.07.001}, pages = {20 -- 37}, year = {2017}, abstract = {Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming practices and forestry in response to population growth and industrialization. This is a unique signature of anthropogenic impact within the Holocene but European vegetation remains climatically sensitive and thus may continue to respond to ongoing climate change. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{FeldMechieHuebscheretal.2017, author = {Feld, Christian and Mechie, James and H{\"u}bscher, Christian and Hall, Jeremy and Nicolaides, Stelios and Gurbuz, Cemil and Bauer, Klaus and Louden, Keith and Weber, Michael}, title = {Crustal structure of the eratosthenes seamount, cyprus and S. Turkey from an amphibian wide-angle seismic profile}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {700}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2017.02.003}, pages = {32 -- 59}, year = {2017}, abstract = {In 2010, project CoCoCo (incipient COntinent-COntinent COllision) recorded a 650 km long amphibian N-S wide-angle seismic profile, extending from the Anatolian plateau across southern Turkey and Cyprus to just south of the Eratosthenes Seamount (ESM). The aim of the project is to reveal the impact of the transition from subduction to continent-continent collision of Africa with Anatolia. Arrival picking, finite-differences ray-tracing and inversion of the offshore and on-offshore data produced a tomographic model across southern Cyprus, the accretionary wedge and the ESM. The main features of this model are (1) crustal P-velocities predominantly lower than 6.5 km/s beneath the ESM, (2) crustal thickness between 28 and 37 km, (3) an upper crustal reflection at 5 km depth beneath the ESM, (4) the likely presence of oceanic crust south of the ESM and a transform margin north of it and (5) a 12 km thick ophiolite sequence on Cyprus. Land shots on Turkey, also recorded on Cyprus, gravity data and geological and previous seismic investigations allow to derive a layered velocity model beneath Anatolia and the northern part of Cyprus. The main features of this model are (1) Moho depths of 38-45 km beneath the Anatolian plateau, (2) an upper and lower crust with large lateral changes in velocity and thickness, (3) a north-dipping subducting plate below Cyprus with a steepening of the dip-angle of the plate at about 45 km depth. Thus, the wide-angle seismic and gravity data provide detailed insights into the 2-D geometry and velocity structures associated with the Cyprus Arc collision zone. Finally, integrated analysis of the geophysics and geology allows a comprehensive interpretation of the crustal structure related to the collision process.}, language = {en} }