@article{Wels2005, author = {Wels, Volkhard}, title = {imaginatio oder inventio}, series = {Poetica : Zeitschrift f{\"u}r Sprach- und Literaturwissenschaft}, volume = {37}, journal = {Poetica : Zeitschrift f{\"u}r Sprach- und Literaturwissenschaft}, number = {1/2}, publisher = {Fink}, address = {M{\"u}nchen}, issn = {0303-4178}, pages = {65 -- 91}, year = {2005}, abstract = {Der Aufsatz analysiert die Begriffe der imaginatio und inventio und deren Verh{\"a}ltnis zueinander in den Poetiken von George Puttenham („Arte of English Poesie", 1589), Philip Sidney („Defense of Poetry", 1595) und William Temple („Analysis tractationis de poesi", um 1595). Anders als zu erwarten wird in allen drei F{\"a}llen das dichterische Verm{\"o}gen nicht im Sinne eines modernen Begriffs von kreativer Phantasie gedeutet. Weil der Begriff der imaginatio eine gef{\"a}hrliche N{\"a}he zu den Wahnvorstellungen eines Verr{\"u}ckten impliziert, es Puttenham und Sidney aber vor allem um eine soziale Aufwertung der Dichtung als einer h{\"o}fisch angemessenen T{\"a}tigkeit geht, wird der Begriff der imaginatio nur in einem sehr eingeschr{\"a}nkten Sinne verwendet. Das impliziert auch eine Ablehnung des Begriffs eines Enthusiasmus oder furor poeticus, also einer g{\"o}ttlichen Inspiration des Dichters, wie er insbesondere mit dem Neuplatonismus Ficinos assoziiert wurde.}, language = {de} } @article{Wels2005, author = {Wels, Volkhard}, title = {Zur Vorgeschichte des Begriffs der 'kreativen Phantasie'}, series = {Zeitschrift f{\"u}r {\"A}sthetik und allgemeine Kunstwissenschaft}, volume = {50}, journal = {Zeitschrift f{\"u}r {\"A}sthetik und allgemeine Kunstwissenschaft}, number = {2}, publisher = {Felix Meiner Verlag}, address = {Hamburg}, issn = {0044-2186}, pages = {199 -- 226}, year = {2005}, abstract = {Gegen die g{\"a}ngige Vorstellung von der ‚kreativen Phantasie' als dem sch{\"o}pferischen Verm{\"o}gen des Dichters argumentiert der Aufsatz, dass erst mit der Fr{\"u}hromantik die Phantasie zum kreativen Verm{\"o}gen erkl{\"a}rt wird, davor jedoch die Vernunft als kreatives Verm{\"o}gen galt. In der Fakult{\"a}tenpsychologie des Mittelalters und der Fr{\"u}hen Neuzeit wurde die imaginatio als ein rein passives Vorstellungsverm{\"o}gen der Vernunft nicht entgegengestellt, sondern ihr {\"u}bergeordnet, indem sich die Vernunft der Phantasie als bildgebendem Verfahren bediente. W{\"a}hrend das Ergebnis der Phantasie seit der Fr{\"u}hromantik als {\"a}sthetisches ‚Werk' im emphatischen Sinne gilt, war das Ergebnis der dichtenden Vernunft ein Argument im logischen Sinne, das Prozess der inventio gefunden worden war. Erst Anfang des 18. Jahrhunderts entwickelt sich dann der Begriff der ‚kreativen Phantasie' aus dem rhetorischen Konzept der Anschaulichkeit (evidentia).}, language = {de} } @article{Klinnert2016, author = {Klinnert, Anne}, title = {Von Vater Staat zu Mutter Merkel?}, series = {WeltTrends : das außenpolitische Journal}, journal = {WeltTrends : das außenpolitische Journal}, publisher = {WeltTrends}, address = {Potsdam}, pages = {64 -- 66}, year = {2016}, language = {de} } @article{Wels2006, author = {Wels, Volkhard}, title = {Begabte oder entr{\"u}ckte Dichter}, series = {Neulateinisches Jahrbuch}, volume = {2006}, journal = {Neulateinisches Jahrbuch}, number = {8}, publisher = {Olms-Weidmann}, address = {Hildesheim , Z{\"u}rich , New York, NY}, isbn = {978-3-487-13289-1}, issn = {1438-213X}, pages = {293 -- 312}, year = {2006}, abstract = {1455a 32-34 heißt es in der „Poetik" des Aristoteles, dass die Dichter entweder begabt oder von einem g{\"o}ttlichen Wahnsinn (furor poeticus) besessen seien. Damit scheint es sich bei diesem Satz um die einzige Stelle zu handeln, an der Aristoteles eine g{\"o}ttliche Entr{\"u}ckung der Dichter in Betracht zieht. Die Kommentatoren des 16. Jahrhunderts haben deshalb viel philologischen Scharfsinn auf den Versuch verwendet, diese Stelle so zu deuten, dass sie zur Konzeption der Dichtung als einer technischen F{\"a}higkeit, wie sie die „Poetik" entwickelt, nicht in Widerspruch steht. Mehr oder weniger explizit wenden sie sich dabei gegen die neuplatonische Enthusiasmus-Theorie Marsilio Ficinos.}, language = {de} } @article{BanerjeeStuekerSaalfrank2015, author = {Banerjee, Shiladitya and St{\"u}ker, Tony and Saalfrank, Peter}, title = {Vibrationally resolved optical spectra of modified diamondoids obtained from time-dependent correlation function methods}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {17}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9084}, doi = {10.1039/C5CP02615F}, pages = {19656 -- 19669}, year = {2015}, abstract = {Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp2/sp3 hybrid species with C[double bond, length as m-dash]C double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics.}, language = {en} } @article{LaubrockKliegl2015, author = {Laubrock, Jochen and Kliegl, Reinhold}, title = {The eye-voice span during reading aloud}, series = {Frontiers in psychology}, volume = {6}, journal = {Frontiers in psychology}, number = {1432}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2015.01432}, year = {2015}, abstract = {Although eye movements during reading are modulated by cognitive processing demands, they also reflect visual sampling of the input, and possibly preparation of output for speech or the inner voice. By simultaneously recording eye movements and the voice during reading aloud, we obtained an output measure that constrains the length of time spent on cognitive processing. Here we investigate the dynamics of the eye-voice span (EVS), the distance between eye and voice. We show that the EVS is regulated immediately during fixation of a word by either increasing fixation duration or programming a regressive eye movement against the reading direction. EVS size at the beginning of a fixation was positively correlated with the likelihood of regressions and refixations. Regression probability was further increased if the EVS was still large at the end of a fixation: if adjustment of fixation duration did not sufficiently reduce the EVS during a fixation, then a regression rather than a refixation followed with high probability. We further show that the EVS can help understand cognitive influences on fixation duration during reading: in mixed model analyses, the EVS was a stronger predictor of fixation durations than either word frequency or word length. The EVS modulated the influence of several other predictors on single fixation durations (SFDs). For example, word-N frequency effects were larger with a large EVS, especially when word N-1 frequency was low. Finally, a comparison of SFDs during oral and silent reading showed that reading is governed by similar principles in both reading modes, although EVS maintenance and articulatory processing also cause some differences. In summary, the EVS is regulated by adjusting fixation duration and/or by programming a regressive eye movement when the EVS gets too large. Overall, the EVS appears to be directly related to updating of the working memory buffer during reading.}, language = {en} } @article{LamannaKirschbaumWauricketal.2015, author = {Lamanna, Francesco and Kirschbaum, Frank and Waurick, Isabelle and Dieterich, Christoph and Tiedemann, Ralph}, title = {Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae)}, series = {BMC Genomics}, volume = {16}, journal = {BMC Genomics}, number = {668}, publisher = {Biomed Central}, address = {London}, issn = {1471-2164}, doi = {10.1186/s12864-015-1858-9}, year = {2015}, abstract = {Background African weakly-electric fishes of the family Mormyridae are able to produce and perceive weak electric signals (typically less than one volt in amplitude) owing to the presence of a specialized, muscle-derived electric organ (EO) in their tail region. Such electric signals, also known as Electric Organ Discharges (EODs), are used for objects/prey localization, for the identification of conspecifics, and in social and reproductive behaviour. This feature might have promoted the adaptive radiation of this family by acting as an effective pre-zygotic isolation mechanism. Despite the physiological and evolutionary importance of this trait, the investigation of the genetic basis of its function and modification has so far remained limited. In this study, we aim at: i) identifying constitutive differences in terms of gene expression between electric organ and skeletal muscle (SM) in two mormyrid species of the genus Campylomormyrus: C. compressirostris and C. tshokwe, and ii) exploring cross-specific patterns of gene expression within the two tissues among C. compressirostris, C. tshokwe, and the outgroup species Gnathonemus petersii. Results Twelve paired-end (100 bp) strand-specific RNA-seq Illumina libraries were sequenced, producing circa 330 M quality-filtered short read pairs. The obtained reads were assembled de novo into four reference transcriptomes. In silico cross-tissue DE-analysis allowed us to identify 271 shared differentially expressed genes between EO and SM in C. compressirostris and C.tshokwe. Many of these genes correspond to myogenic factors, ion channels and pumps, and genes involved in several metabolic pathways. Cross-species analysis has revealed that the electric organ transcriptome is more variable in terms of gene expression levels across species than the skeletal muscle transcriptome. Conclusions The data obtained indicate that: i) the loss of contractile activity and the decoupling of the excitation-contraction processes are reflected by the down-regulation of the corresponding genes in the electric organ's transcriptome; ii) the metabolic activity of the EO might be specialized towards the production and turn-over of membrane structures; iii) several ion channels are highly expressed in the EO in order to increase excitability; iv) several myogenic factors might be down-regulated by transcription repressors in the EO.}, language = {en} } @article{PulkkinenMetzler2015, author = {Pulkkinen, Otto and Metzler, Ralf}, title = {Variance-corrected Michaelis-Menten equation predicts transient rates of single-enzyme reactions and response times in bacterial gene-regulation}, series = {Scientific reports}, journal = {Scientific reports}, number = {5}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep17820}, year = {2015}, abstract = {Many chemical reactions in biological cells occur at very low concentrations of constituent molecules. Thus, transcriptional gene-regulation is often controlled by poorly expressed transcription-factors, such as E.coli lac repressor with few tens of copies. Here we study the effects of inherent concentration fluctuations of substrate-molecules on the seminal Michaelis-Menten scheme of biochemical reactions. We present a universal correction to the Michaelis-Menten equation for the reaction-rates. The relevance and validity of this correction for enzymatic reactions and intracellular gene-regulation is demonstrated. Our analytical theory and simulation results confirm that the proposed variance-corrected Michaelis-Menten equation predicts the rate of reactions with remarkable accuracy even in the presence of large non-equilibrium concentration fluctuations. The major advantage of our approach is that it involves only the mean and variance of the substrate-molecule concentration. Our theory is therefore accessible to experiments and not specific to the exact source of the concentration fluctuations.}, language = {en} } @article{GolleMuehlbauerWicketal.2015, author = {Golle, Kathleen and M{\"u}hlbauer, Thomas and Wick, Ditmar and Granacher, Urs}, title = {Physical Fitness Percentiles of German Children Aged 9-12 Years}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {11}, publisher = {Public Library of Science}, address = {Lawrence, Kan.}, issn = {1932-6203}, doi = {10.1371/journal.pone.0142393}, year = {2015}, abstract = {Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i.e., low or high fitness level) to set appropriate fitness goals (i.e., fitness/health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9-12 years and to compute sex- and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i.e., speed), the 1-kg ball push test, the triple hop test (i.e., upper- and lower- extremity muscular power), the stand-and-reach test (i.e., flexibility), the star run test (i.e., agility), and the 9-min run test (i.e., endurance). Age- and sex-specific percentile values (i.e., P10 to P90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age- and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen's d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40-1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10-11 yrs; girls: 9-11 yrs), agility (boys: 9-10 yrs; girls: 9-11 yrs), and endurance (boys: 9-10 yrs; girls: 9-10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407-1,507 m, 1,479-1,597 m, 1,423-1,654 m, and 1,433-1,666 m in 9- to 12-year-old boys and 1,262-1,362 m, 1,329-1,434 m, 1,392-1,501 m, and 1,415-1,526 m in 9- to 12-year-old girls correspond to a "medium" fitness level (i.e., P40 to P60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e.g., lower-extremity muscular power) and curvilinear (e.g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age- and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/grading of children's motor performance.}, language = {en} } @article{RoderHille2015, author = {Roder, Phillip and Hille, Carsten}, title = {A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {12}, publisher = {Public Library of Science}, address = {Lawrence, Kan.}, issn = {1932-6203}, doi = {10.1371/journal.pone.0144157}, year = {2015}, abstract = {Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy.}, language = {en} }