@article{MassaOskinovaPrinjaetal.2019, author = {Massa, Derck and Oskinova, Lida and Prinja, Raman and Ignace, Richard}, title = {Coordinated UV and X-Ray Spectroscopic Observations of the O-type Giant xi Per}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {873}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab0283}, pages = {12}, year = {2019}, abstract = {We present new, contemporaneous Hubble Space Telescope STIS and XMM-Newton observations of the O7. III(n) ((f)) star xi Per. We supplement the new data with archival IUE spectra, to analyze the variability of the wind lines and X-ray flux of xi Per. The variable wind of this star is known to have a 2.086-day periodicity. We use a simple, heuristic spot model that fits the low-velocity (near-surface) IUE wind line variability very well, to demonstrate that the low-velocity absorption in the new STIS spectra of N IV lambda 1718 and Si IV lambda 1402 vary with the same 2.086-day period. It is remarkable that the period and amplitude of the STIS data agree with those of the IUE spectra obtained 22 yr earlier. We also show that the time variability of the new XMM-Newton fluxes is also consistent with the 2.086-day period. Thus, our new, multiwavelength coordinated observations demonstrate that the mechanism that causes the UV wind line variability is also responsible for a significant fraction of the X-rays in single O stars. The sequence of events for the multiwavelength light-curve minima is Si IV lambda 1402, N IV lambda 1718, and X-ray flux, each separated by a phase of about 0.06 relative to the 2.086-day period. Analysis of the X-ray fluxes shows that they become softer as they weaken. This is contrary to expectations if the variability is caused by periodic excess absorption. Furthermore, the high-resolution X-ray spectra suggest that the individual emission lines at maximum are more strongly blueshifted. If we interpret the low-velocity wind line light curves in terms of our model, it implies that there are two bright regions, i.e., regions with less absorption, separated by 180 degrees, on the surface of the star. We note that the presence and persistence of two spots separated by 180 degrees suggest that a weak dipole magnetic field is responsible for the variability of the UV wind line absorption and X-ray flux in xi Per.}, language = {en} } @article{MassaOskinovaFullertonetal.2014, author = {Massa, D. and Oskinova, Lida and Fullerton, A. W. and Prinja, R. K. and Bohlender, D. A. and Morrison, N. D. and Blake, M. and Pych, W.}, title = {CIR modulation of the X-ray flux from the O7.5 III(n)((f)) star xi Persei(a similar to...)?}, series = {Monthly notices of the Royal Astronomical Society}, volume = {441}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stu565}, pages = {2173 -- 2180}, year = {2014}, abstract = {We analyse a 162 ks high energy transmission grating Chandra observation of the O7.5 III(n)((f)) star xi Per, together with contemporaneous H alpha observations. The X-ray spectrum of this star is similar to other single O stars, and not pathological in any way. Its UV wind lines are known to display cyclical time variability, with a period of 2.086 d, which is thought to be associated with corotating interaction regions (CIRs). We examine the Chandra and H alpha data for variability on this time-scale. We find that the X-rays vary by similar to 15 per cent over the course of the observations and that this variability is out of phase with variable absorption on the blue wing of the H alpha profiles (assumed to be a surrogate for the UV absorption associated with CIRs). While not conclusive, both sets of data are consistent with models where the CIRs are either a source of X-rays or modulate them.}, language = {en} } @article{LetoTrigilioOskinovaetal.2018, author = {Leto, Paolo and Trigilio, C. and Oskinova, Lida and Ignace, R. and Buemi, C. S. and Umana, G. and Ingallinera, A. and Leone, Francesco and Phillips, N. M. and Agliozzo, Claudia and Todt, Helge Tobias and Cerrigone, L.}, title = {A combined multiwavelength VLA/ALMA/Chandra study unveils the complex magnetosphere of the B-type star HR5907}, series = {Monthly notices of the Royal Astronomical Society}, volume = {476}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty244}, pages = {562 -- 579}, year = {2018}, abstract = {We present new radio/millimeter measurements of the hot magnetic star HR5907 obtained with the VLA and ALMA interferometers. We find that HR5907 is the most radio luminous early type star in the cm-mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR5907.}, language = {en} } @article{LetoTrigilioOskinovaetal.2017, author = {Leto, Paolo and Trigilio, C. and Oskinova, Lida and Ignace, R. and Buemi, C. S. and Umana, G. and Ingallinera, A. and Todt, Helge Tobias and Leone, F.}, title = {The detection of variable radio emission from the fast rotating magnetic hot B-star HR 7355 and evidence for its X-ray aurorae}, series = {Monthly notices of the Royal Astronomical Society}, volume = {467}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx267}, pages = {2820 -- 2833}, year = {2017}, abstract = {In this paper, we investigate the multiwavelength properties of the magnetic early B-type star HR 7355. We present its radio light curves at several frequencies, taken with the Jansky Very Large Array, and X-ray spectra, taken with the XMM-Newton X-ray telescope. Modelling of the radio light curves for the Stokes I and V provides a quantitative analysis of the HR 7355 magnetosphere. A comparison between HR 7355 and a similar analysis for the Ap star CU Vir allows us to study how the different physical parameters of the two stars affect the structure of the respective magnetospheres where the non-thermal electrons originate. Our model includes a cold thermal plasma component that accumulates at high magnetic latitudes that influences the radio regime, but does not give rise to X-ray emission. Instead, the thermal X-ray emission arises from shocks generated by wind stream collisions close to the magnetic equatorial plane. The analysis of the X-ray spectrum of HR 7355 also suggests the presence of a non-thermal radiation. Comparison between the spectral index of the power-law X-ray energy distribution with the non-thermal electron energy distribution indicates that the non-thermal X-ray component could be the auroral signature of the non-thermal electrons that impact the stellar surface, the same non-thermal electrons that are responsible for the observed radio emission. On the basis of our analysis, we suggest a novel model that simultaneously explains the X-ray and the radio features of HR 7355 and is likely relevant for magnetospheres of other magnetic early-type stars.}, language = {en} } @article{IlićPetkovićPoppenhaegerHosseini2022, author = {Ilić Petković, Nikoleta and Poppenh{\"a}ger, Katja and Hosseini, Seyede Marzieh}, title = {Tidal star-planet interaction and its observed impact on stellar activity in planet-hosting wide binary systems}, series = {Monthly notices of the Royal Astronomical Society}, volume = {513}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac861}, pages = {4380 -- 4404}, year = {2022}, abstract = {Tidal interaction between an exoplanet and its host star is a possible pathway to transfer angular momentum between the planetary orbit and the stellar spin. In cases where the planetary orbital period is shorter than the stellar rotation period, this may lead to angular momentum being transferred into the star's rotation, possibly counteracting the intrinsic stellar spin-down induced by magnetic braking. Observationally, detecting altered rotational states of single, cool field stars is challenging, as precise ages for such stars are rarely available. Here we present an empirical investigation of the rotation and magnetic activity of a sample of planet-hosting stars that are accompanied by wide stellar companions. Without needing knowledge about the absolute ages of the stars, we test for relative differences in activity and rotation of the planet hosts and their co-eval companions, using X-ray observations to measure the stellar activity levels. Employing three different tidal interaction models, we find that host stars with planets that are expected to tidally interact display elevated activity levels compared to their companion stars. We also find that those activity levels agree with the observed rotational periods for the host stars along the usual rotation-activity relationships, implying that the effect is indeed caused by a tidal interaction and not a purely magnetic interaction that would be expected to affect the stellar activity, but not necessarily the rotation. We conclude that massive, close-in planets have an impact on the stellar rotational evolution, while the smaller, more distant planets do not have a significant influence.}, language = {en} } @article{IgnaceGayleyHamannetal.2013, author = {Ignace, Rico and Gayley, Kenneth G. and Hamann, Wolf-Rainer and Huenemoerder, David P. and Oskinova, Lida and Pollock, Andy M. T. and McFall, Michael}, title = {THE XMM-NEWTON/EPIC X-RAY LIGHT CURVE ANALYSIS OF WR 6}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {775}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/775/1/29}, pages = {12}, year = {2013}, abstract = {We obtained four pointings of over 100 ks each of the well-studied Wolf-Rayet star WR 6 with the XMM-Newton satellite. With a first paper emphasizing the results of spectral analysis, this follow-up highlights the X-ray variability clearly detected in all four pointings. However, phased light curves fail to confirm obvious cyclic behavior on the well-established 3.766 day period widely found at longer wavelengths. The data are of such quality that we were able to conduct a search for event clustering in the arrival times of X-ray photons. However, we fail to detect any such clustering. One possibility is that X-rays are generated in a stationary shock structure. In this context we favor a corotating interaction region (CIR) and present a phenomenological model for X-rays from a CIR structure. We show that a CIR has the potential to account simultaneously for the X-ray variability and constraints provided by the spectral analysis. Ultimately, the viability of the CIR model will require both intermittent long-term X-ray monitoring of WR 6 and better physical models of CIR X-ray production at large radii in stellar winds.}, language = {en} } @article{IgnaceOskinovaMassa2013, author = {Ignace, Richard and Oskinova, Lida and Massa, D.}, title = {A report on the X-ray properties of the tau Sco-like stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {429}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sts358}, pages = {516 -- 522}, year = {2013}, abstract = {An increasing number of OB stars have been shown to possess magnetic fields. Although the sample remains small, it is surprising that the magnetic and X-ray properties of these stars appear to be far less correlated than expected. This contradicts model predictions, which generally indicate that the X-rays from magnetic stars are harder and more luminous than their non-magnetic counterparts. Instead, the X-ray properties of magnetic OB stars are quite diverse. tau Sco is one example where the expectations are better met. This bright main-sequence, early B star has been studied extensively in a variety of wavebands. It has a surface magnetic field of around 500 G, and Zeeman Doppler tomography has revealed an unusual field configuration. Furthermore, tau Sco displays an unusually hard X-ray spectrum, much harder than similar, non-magnetic OB stars. In addition, the profiles of its UV P Cygni wind lines have long been known to possess a peculiar morphology. Recently, two stars, HD 66665 and HD 63425, whose spectral types and UV wind line profiles are similar to those of tau Sco, have also been determined to be magnetic. In the hope of establishing a magnetic field - X-ray connection for at least a subset of the magnetic stars, we obtained XMM-Newton European Photon Imaging Camera spectra of these two objects. Our results for HD 66665 are somewhat inconclusive. No especially strong hard component is detected; however, the number of source counts is insufficient to rule out hard emission. Longer exposure is needed to assess the nature of the X-rays from this star. On the other hand, we do find that HD 63425 has a substantial hard X-ray component, thereby bolstering its close similarity to tau Sco.}, language = {en} } @article{HuenemoerderOskinovaIgnaceetal.2012, author = {H{\"u}nem{\"o}rder, David P. and Oskinova, Lida and Ignace, Richard and Waldron, Wayne L. and Todt, Helge Tobias and Hamaguchi, Kenji and Kitamoto, Shunji}, title = {On the weak-wind problem in massive stars X-ray spectra reveal a massive hot wind in mu columbaea}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {756}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/756/2/L34}, pages = {5}, year = {2012}, abstract = {mu Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O stars. Therefore, the "weak-wind problem"-identified from cool wind UV/optical spectra-is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma-the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within five stellar radii. Our results challenge the idea that some OB stars are "weak-wind" stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays.}, language = {en} } @article{HubrigSchoellerKholtyginetal.2015, author = {Hubrig, Swetlana and Sch{\"o}ller, Markus and Kholtygin, Alexander F. and Tsumura, Hiroki and Hoshino, Akio and Kitamoto, Shunji and Oskinova, Lida and Ignace, Richard and Todt, Helge Tobias and Ilyin, Ilya}, title = {New multiwavelength observations of the Of?p star CPD-28 degrees 2561}, series = {Monthly notices of the Royal Astronomical Society}, volume = {447}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stu2516}, pages = {1885 -- 1894}, year = {2015}, abstract = {A rather strong mean longitudinal magnetic field of the order of a few hundred gauss was detected a few years ago in the Of?p star CPD -28 degrees 2561 using FORS2 (FOcal Reducer low dispersion Spectrograph 2) low-resolution spectropolarimetric observations. In this work, we present additional low-resolution spectropolarimetric observations obtained during several weeks in 2013 December using FORS 2 mounted at the 8-m Antu telescope of the Very Large Telescope (VLT). These observations cover a little less than half of the stellar rotation period of 73.41 d mentioned in the literature. The behaviour of the mean longitudinal magnetic field is consistent with the assumption of a single-wave variation during the stellar rotation cycle, indicating a dominant dipolar contribution to the magnetic field topology. The estimated polar strength of the surface dipole B-d is larger than 1.15 kG. Further, we compared the behaviour of the line profiles of various elements at different rotation phases associated with different magnetic field strengths. The strongest contribution of the emission component is observed at the phases when the magnetic field shows a negative or positive extremum. The comparison of the spectral behaviour of CPD -28 degrees 2561 with that of another Of?p star, HD 148937 of similar spectral type, reveals remarkable differences in the degree of variability between both stars. Finally, we present new X-ray observations obtained with the Suzaku X-ray Observatory. We report that the star is X-ray bright with log L-X/L-bol approximate to -5.7. The low-resolution X-ray spectra reveal the presence of a plasma heated up to 24 MK. We associate the 24 MK plasma in CPD -28 degrees 2561 with the presence of a kG strong magnetic field capable to confine stellar wind.}, language = {en} } @article{HubrigOskinovaSchoeller2011, author = {Hubrig, Swetlana and Oskinova, Lida and Schoeller, M.}, title = {First detection of a magnetic field in the fast rotating runaway Oe star zeta Ophiuchi}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {332}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0004-6337}, doi = {10.1002/asna.201111516}, pages = {147 -- 152}, year = {2011}, abstract = {The star zeta Ophiuchi is one of the brightest massive stars in the northern hemisphere and was intensively studied in various wavelength domains. The currently available observational material suggests that certain observed phenomena are related to the presence of a magnetic field. We acquired spectropolarimetric observations of zeta Oph with FORS 1 mounted on the 8-m Kueyen telescope of the VLT to investigate if a magnetic field is indeed present in this star. Using all available absorption lines, we detect a mean longitudinal magnetic field < B(z)>(all) = 141 +/- 45 G, confirming the magnetic nature of this star. We review the X-ray properties of zeta Oph with the aim to understand whether the X-ray emission of zeta Oph is dominated by magnetic or by wind instability processes.}, language = {en} }