@misc{YokoyamaLeimkuehler2015, author = {Yokoyama, Kenichi and Leimk{\"u}hler, Silke}, title = {The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria}, series = {Biochimica et biophysica acta : Molecular cell research}, volume = {1853}, journal = {Biochimica et biophysica acta : Molecular cell research}, number = {6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-4889}, doi = {10.1016/j.bbamcr.2014.09.021}, pages = {1335 -- 1349}, year = {2015}, abstract = {The biosynthesis of the molybdenum cofactor (Moco) has been intensively studied, in addition to its insertion into molybdoenzymes. In particular, a link between the assembly of molybdoenzymes and the biosynthesis of FeS clusters has been identified in the recent years: 1) the synthesis of the first intermediate in Moco biosynthesis requires an FeS-cluster containing protein, 2) the sulfurtransferase for the dithiolene group in Moco is also involved in the synthesis of FeS clusters, thiamin and thiolated tRNAs, 3) the addition of a sulfido-ligand to the molybdenum atom in the active site additionally involves a sulfurtransferase, and 4) most molybdoenzymes in bacteria require FeS clusters as redox active cofactors. In this review we will focus on the biosynthesis of the molybdenum cofactor in bacteria, its modification and insertion into molybdoenzymes, with an emphasis to its link to FeS cluster biosynthesis and sulfur transfer. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @misc{HartmannSchwanholdLeimkuehler2015, author = {Hartmann, Tobias and Schwanhold, Nadine and Leimk{\"u}hler, Silke}, title = {Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria}, series = {Biochimica et biophysica acta : Proteins and proteomics}, volume = {1854}, journal = {Biochimica et biophysica acta : Proteins and proteomics}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1570-9639}, doi = {10.1016/j.bbapap.2014.12.006}, pages = {1090 -- 1100}, year = {2015}, abstract = {The global carbon cycle depends on the biological transformations of C-1 compounds, which include the reductive incorporation of CO2 into organic molecules (e.g. in photosynthesis and other autotrophic pathways), in addition to the production of CO2 from formate, a reaction that is catalyzed by formate dehydrogenases (FDHs). FDHs catalyze, in general, the oxidation of formate to CO2 and H+. However, selected enzymes were identified to act as CO2 reductases, which are able to reduce CO2 to formate under physiological conditions. This reaction is of interest for the generation of formate as a convenient storage form of H-2 for future applications. Cofactor-containing FDHs are found in anaerobic bacteria and archaea, in addition to facultative anaerobic or aerobic bacteria. These enzymes are highly diverse and employ different cofactors such as the molybdenum cofactor (Moco), FeS clusters and flavins, or cytochromes. Some enzymes include tungsten (W) in place of molybdenum (Mo) at the active site. For catalytic activity, a selenocysteine (SeCys) or cysteine (Cys) ligand at the Mo atom in the active site is essential for the reaction. This review will focus on the characterization of Mo- and W-containing FDHs from bacteria, their active site structure, subunit compositions and its proposed catalytic mechanism. We will give an overview on the different mechanisms of substrate conversion available so far, in addition to providing an outlook on bio-applications of FDHs. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} }