@article{MartinezGarzonKwiatekSoneetal.2014, author = {Martinez-Garzon, Patricia and Kwiatek, Grzegorz and Sone, Hiroki and Bohnhoff, Marco and Dresen, Georg and Hartline, Craig}, title = {Spatiotemporal changes, faulting regimes, and source parameters of induced seismicity: A case study from the Geysers geothermal field}, series = {Journal of geophysical research : Solid earth}, volume = {119}, journal = {Journal of geophysical research : Solid earth}, number = {11}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2014JB011385}, pages = {8378 -- 8396}, year = {2014}, abstract = {The spatiotemporal, kinematic, and source characteristics of induced seismicity occurring at different fluid injection rates are investigated to determine the predominant physical mechanisms responsible for induced seismicity at the northwestern part of The Geysers geothermal field, California. We analyze a relocated hypocenter catalog from a seismicity cluster where significant variations of the stress tensor orientation were previously observed to correlate with injection rates. We find that these stress tensor orientation changes may be related to increased pore pressure and the corresponding changes in poroelastic stresses at reservoir depth. Seismic events during peak injections tend to occur at greater distances from the injection well, preferentially trending parallel to the maximum horizontal stress direction. In contrast, at lower injection rates the seismicity tends to align in a different direction which suggests the presence of a local fault. During peak injection intervals, the relative contribution of strike-slip faulting mechanisms increases. Furthermore, increases in fluid injection rates also coincide with a decrease in b values. Our observations suggest that regardless of the injection stage, most of the induced seismicity results from thermal fracturing of the reservoir rock. However, during peak injection intervals, the increase in pore pressure may likewise be responsible for the induced seismicity. By estimating the thermal and hydraulic diffusivities of the reservoir, we confirm that the characteristic diffusion length for pore pressure is much greater than the corresponding length scale for temperature and also more consistent with the spatial extent of seismicity observed during different injection rates.}, language = {en} } @article{KwiatekMartinezGarzonDresenetal.2015, author = {Kwiatek, Grzegorz and Martinez-Garzon, Patricia and Dresen, Georg and Bohnhoff, Marco and Sone, Hiroki and Hartline, Craig}, title = {Effects of long-term fluid injection on induced seismicity parameters and maximum magnitude in northwestern part of The Geysers geothermal field}, series = {Journal of geophysical research : Solid earth}, volume = {120}, journal = {Journal of geophysical research : Solid earth}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2015JB012362}, pages = {7085 -- 7101}, year = {2015}, abstract = {The long-term temporal and spatial changes in statistical, source, and stress characteristics of one cluster of induced seismicity recorded at The Geysers geothermal field (U.S.) are analyzed in relation to the field operations, fluid migration, and constraints on the maximum likely magnitude. Two injection wells, Prati-9 and Prati-29, located in the northwestern part of the field and their associated seismicity composed of 1776 events recorded throughout a 7year period were analyzed. The seismicity catalog was relocated, and the source characteristics including focal mechanisms and static source parameters were refined using first-motion polarity, spectral fitting, and mesh spectral ratio analysis techniques. The source characteristics together with statistical parameters (b value) and cluster dynamics were used to investigate and understand the details of fluid migration scheme in the vicinity of injection wells. The observed temporal, spatial, and source characteristics were clearly attributed to fluid injection and fluid migration toward greater depths, involving increasing pore pressure in the reservoir. The seasonal changes of injection rates were found to directly impact the shape and spatial extent of the seismic cloud. A tendency of larger seismic events to occur closer to injection wells and a correlation between the spatial extent of the seismic cloud and source sizes of the largest events was observed suggesting geometrical constraints on the maximum likely magnitude and its correlation to the average injection rate and volume of fluids present in the reservoir.}, language = {en} }