@misc{CaesarMcCarthyThornalleyetal.2022, author = {Caesar, Levke and McCarthy, Gerard D. and Thornalley, David J. R. and Cahill, Niamh and Rahmstorf, Stefan}, title = {Reply to: Atlantic circulation change still uncertain}, series = {Nature geoscience}, volume = {15}, journal = {Nature geoscience}, number = {3}, publisher = {Nature Publ. Group}, address = {London}, issn = {1752-0894}, doi = {10.1038/s41561-022-00897-3}, pages = {168 -- 170}, year = {2022}, language = {en} } @misc{CaesarRahmstorfFeulner2021, author = {Caesar, Levke and Rahmstorf, Stefan and Feulner, Georg}, title = {Reply to comment on 'On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming'}, series = {Environmental research letters}, volume = {16}, journal = {Environmental research letters}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/abc776}, pages = {5}, year = {2021}, abstract = {In their comment on our paper (Caesar et al 2020 Environ. Res. Lett. 15 024003), Chen and Tung (hereafter C\&T) argue that our analysis, showing that over the last decades Atlantic meridional overturning circulation (AMOC) strength and global mean surface temperature (GMST) were positively correlated, is incorrect. Their claim is mainly based on two arguments, neither of which is justified: first, C\&T claim that our analysis is based on 'established evidence' that was only true for preindustrial conditions-this is not the case. Using data from the modern period (1947-2012), we show that the established understanding (i.e. deep-water formation in the North Atlantic cools the deep ocean and warms the surface) is correct, but our analysis is not based on this fact. Secondly, C\&T claim that our results are based on a statistical analysis of only one cycle of data which was furthermore incorrectly detrended. This, too, is not true. Our conclusion that a weaker AMOC delays the current surface warming rather than enhances it, is based on several independent lines of evidence. The data we show to support this covers more than one cycle and the detrending (which was performed to avoid spurious correlations due to a common trend) does not affect our conclusion: the correlation between AMOC strength and GMST is positive. We do not claim that this is strong evidence that the two time series are in phase, but rather that this means that the two time series are not anti-correlated.}, language = {en} } @misc{WolffCanilRehermannetal.2020, author = {Wolff, Christian Michael and Canil, Laura and Rehermann, Carolin and Nguyen, Ngoc Linh and Zu, Fengshuo and Ralaiarisoa, Maryline and Caprioglio, Pietro and Fiedler, Lukas and Stolterfoht, Martin and Kogikoski, Junior, Sergio and Bald, Ilko and Koch, Norbert and Unger, Eva L. and Dittrich, Thomas and Abate, Antonio and Neher, Dieter}, title = {Correction to 'Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells' (2020, 14 (2), 1445-1456)}, series = {ACS nano}, volume = {14}, journal = {ACS nano}, number = {11}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1936-0851}, doi = {10.1021/acsnano.0c08081}, pages = {16156 -- 16156}, year = {2020}, language = {en} } @misc{ParsonsSchuesslerGarrigouxetal.2017, author = {Parsons, R. D. and Sch{\"u}ssler, F. and Garrigoux, T. and Balzer, A. and F{\"u}ssling, Matthias and Hoischen, Clemens and Holler, M. and Mitchell, A. and P{\"u}hlhofer, G. and Rowell, G. and Wagner, S. and Bissaldi, E. and Tam, P. H. T.}, title = {The HESS II GRB Observation Scheme}, series = {AIP conference proceedings / American Institute of Physics}, volume = {1792}, journal = {AIP conference proceedings / American Institute of Physics}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, organization = {HESS Collaboration}, isbn = {978-0-7354-1456-3}, issn = {0094-243X}, doi = {10.1063/1.4968980}, pages = {5}, year = {2017}, abstract = {Gamma-ray bursts (GRBs) are some of the Universe's most enigmatic and exotic events. However, at energies above 10 GeV their behaviour remains largely unknown. Although space based telescopes such as the Fermi-LAT have been able to detect GRBs in this energy range, their photon statistics are limited by the small detector size. Such limitations are not present in ground based gamma-ray telescopes such as the H.E.S.S. experiment, which has now entered its second phase with the addition of a large 600 m2 telescope to the centre of the array. Such a large telescope allows H.E.S.S. to access the sub 100-GeV energy range while still maintaining a large effective collection area, helping to potentially probe the short timescale emission of these events. We present a description of the H.E.S.S. GRB observation programme, summarising the performance of the rapid GRB repointing system and the conditions under which GRB observations are initiated. Additionally we will report on the GRB follow-ups made during the 2014-15 observation campaigns.}, language = {en} } @misc{AnguenerAharonianBordasetal.2017, author = {Ang{\"u}ner, Ekrem Oǧuzhan and Aharonian, Felix A. and Bordas, Pol and Casanova, Sabrina and Hoischen, Clemens and Oya, I. and Ziegler, A.}, title = {HESS J1826-130}, series = {AIP conference proceedings / American Institute of Physics}, volume = {1792}, journal = {AIP conference proceedings / American Institute of Physics}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, organization = {HESS Collaboration}, isbn = {978-0-7354-1456-3}, issn = {0094-243X}, doi = {10.1063/1.4968928}, pages = {6}, year = {2017}, abstract = {HESS J1826-130 is an unidentified hard spectrum source discovered by H.E.S.S. along the Galactic plane, the spectral index being Gamma = 1.6 with an exponential cut-off at about 12 TeV. While the source does not have a clear counterpart at longer wavelengths, the very hard spectrum emission at TeV energies implies that electrons or protons accelerated up to several hundreds of TeV are responsible for the emission. In the hadronic case, the VHE emission can be produced by runaway cosmic-rays colliding with the dense molecular clouds spatially coincident with the H.E.S.S. source.}, language = {en} } @misc{KubatovaKubatHamannetal.2017, author = {Kubatova, B. and Kub{\´a}t, Jiř{\´i} and Hamann, Wolf-Rainer and Oskinova, Lida}, title = {Clumping in Massive Star Winds and its Possible Connection to the B[e] Phenomenon}, series = {The B(e) Phenomenon: Forty Years of Studies : proceedings of a conference held at Charles University, Prague, Czech Republic, 27 June-1 July 2016}, volume = {508}, journal = {The B(e) Phenomenon: Forty Years of Studies : proceedings of a conference held at Charles University, Prague, Czech Republic, 27 June-1 July 2016}, publisher = {Astronomical Soceity of the Pacific}, address = {San Fransisco}, isbn = {978-1-58381-900-5}, pages = {45 -- 50}, year = {2017}, abstract = {It has been observationally established that winds of hot massive stars have highly variable characteristics. The variability evident in the winds is believed to be caused by structures on a broad range of spatial scales. Small-scale structures (clumping) in stellar winds of hot stars are possible consequence of an instability appearing in their radiation hydrodynamics. To understand how clumping may influence calculation of theoretical spectra, different clumping properties and their 3D nature have to be taken into account. Properties of clumping have been examined using our 3D radiative transfer calculations. Effects of clumping for the case of the B[e] phenomenon are discussed.}, language = {en} } @misc{KurfuerstFeldmeierKrtička2017, author = {Kurf{\"u}rst, P. and Feldmeier, Achim and Krtička, Jiri}, title = {Modeling sgB[e] Circumstellar Disks}, series = {The B(e) Phenomenon: Forty Years of Studies : proceedings of a conference held at Charles University, Prague, Czech Republic, 27 June-1 July 2016}, volume = {508}, journal = {The B(e) Phenomenon: Forty Years of Studies : proceedings of a conference held at Charles University, Prague, Czech Republic, 27 June-1 July 2016}, publisher = {Astronomical Scoeity of the Pacific}, address = {San Fransisco}, isbn = {978-1-58381-900-5}, pages = {17 -- 22}, year = {2017}, abstract = {During their evolution, massive stars are characterized by a significant loss of mass either via spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around these objects is still under debate. Is it a viscous disk or an ouftlowing disk-forming wind or some other mechanism? It is also unclear how various physical mechanisms that act on the circumstellar environment of the stars affect its shape, density, kinematic, and thermal structure. We assume that the disk-forming mechanism is a viscous transport within an equatorial outflowing disk of a rapidly or even critically rotating star. We study the hydrodynamic and thermal structure of optically thick dense parts of outflowing circumstellar disks that may form around,e.g., Be stars, sgB[e] stars, or Pop m stars. We calculate self-consistent time dependent models of the inner dense region of the disk that is strongly affected either by irradiation from the central star and by contributions of viscous heating effects. We also simulate the dynamic effects of collision between expanding ejecta of supernovae and circumstellar disks that may be form in sgB[e] stars and, e.g., LBVs or Pop in stars.}, language = {en} } @misc{ThoelertHoermannAntreichetal.2017, author = {Thoelert, Steffen and H{\"o}rmann, Ulrich and Antreich, Felix and Meurer, Michael}, title = {Ionospheric effects on high gain antenna GNSS measurements}, series = {Proceedings of the 30th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2017)}, journal = {Proceedings of the 30th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2017)}, publisher = {Instituite of Navigation}, address = {Washington}, issn = {2331-5911}, doi = {10.33012/2017.15343}, pages = {3368 -- 3374}, year = {2017}, abstract = {The ionospheric delay of global navigation satellite systems (GNSS) signals typically is compensated by adding a single correction value to the pseudorange measurement of a GNSS receiver. Yet, this neglects the dispersive nature of the ionosphere. In this context we analyze the ionospheric signal distortion beyond a constant delay. These effects become increasingly significant with the signal bandwidth and hence more important for new broadband navigation signals. Using measurements of the Galileo E5 signal, captured with a high gain antenna, we verify that the expected influence can indeed be observed and compensated. A new method to estimate the total electron content (TEC) from a single frequency high gain antenna measurement of a broadband GNSS signal is proposed and described in detail. The received signal is de facto unaffected by multi-path and interference because of the narrow aperture angle of the used antenna which should reduce the error source of the result in general. We would like to point out that such measurements are independent of code correlation, like in standard receiver applications. It is therefore also usable without knowledge of the signal coding. Results of the TEC estimation process are shown and discussed comparing to common TEC products like TEC maps and dual frequency receiver estimates.}, language = {en} } @misc{LouposDamigosAmditisetal.2017, author = {Loupos, Konstantinos and Damigos, Yannis and Amditis, Angelos and Gerhard, Reimund and Rychkov, Dmitry and Wirges, Werner and Schulze, Manuel and Lenas, Sotiris-Angelos and Chatziandreoglou, Christos and Malliou, Christina and Tsaoussidis, Vassilis and Brady, Ken and Frankenstein, Bernd}, title = {Structural health monitoring system for bridges based on skin-like sensor}, series = {IOP conference series : Materials science and engineering}, volume = {236}, journal = {IOP conference series : Materials science and engineering}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1757-8981}, doi = {10.1088/1757-899X/236/1/012100}, pages = {10}, year = {2017}, abstract = {Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10\%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.}, language = {en} } @misc{WaldripNivenAbeletal.2017, author = {Waldrip, Steven H. and Niven, Robert K. and Abel, Markus and Schlegel, Michael}, title = {Consistent maximum entropy representations of pipe flow networks}, series = {AIP conference proceedings}, volume = {1853}, journal = {AIP conference proceedings}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, isbn = {978-0-7354-1527-0}, issn = {0094-243X}, doi = {10.1063/1.4985365}, year = {2017}, abstract = {The maximum entropy method is used to predict flows on water distribution networks. This analysis extends the water distribution network formulation of Waldrip et al. (2016) Journal of Hydraulic Engineering (ASCE), by the use of a continuous relative entropy defined on a reduced parameter set. This reduction in the parameters that the entropy is defined over ensures consistency between different representations of the same network. The performance of the proposed reduced parameter method is demonstrated with a one-loop network case study.}, language = {en} }