@article{RadosavljevicLantuitKnoblauchetal.2022, author = {Radosavljevic, Boris and Lantuit, Hugues and Knoblauch, Christian and Couture, Nicole and Herzschuh, Ulrike and Fritz, Michael}, title = {Arctic nearshore sediment dynamics - an example from Herschel Island - Qikiqtaruk, Canada}, series = {Journal of marine science and engineering}, volume = {10}, journal = {Journal of marine science and engineering}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2077-1312}, doi = {10.3390/jmse10111589}, pages = {18}, year = {2022}, abstract = {Increasing arctic coastal erosion rates imply a greater release of sediments and organic matter into the coastal zone. With 213 sediment samples taken around Herschel Island-Qikiqtaruk, Canadian Beaufort Sea, we aimed to gain new insights on sediment dynamics and geochemical properties of a shallow arctic nearshore zone. Spatial characteristics of nearshore sediment texture (moderately to poorly sorted silt) are dictated by hydrodynamic processes, but ice-related processes also play a role. We determined organic matter (OM) distribution and inferred the origin and quality of organic carbon by C/N ratios and stable carbon isotopes delta C-13. The carbon content was higher offshore and in sheltered areas (mean: 1.0 wt.\%., S.D.: 0.9) and the C/N ratios also showed a similar spatial pattern (mean: 11.1, S.D.: 3.1), while the delta C-13 (mean: -26.4 parts per thousand VPDB, S.D.: 0.4) distribution was more complex. We compared the geochemical parameters of our study with terrestrial and marine samples from other studies using a bootstrap approach. Sediments of the current study contained 6.5 times and 1.8 times less total organic carbon than undisturbed and disturbed terrestrial sediments, respectively. Therefore, degradation of OM and separation of carbon pools take place on land and continue in the nearshore zone, where OM is leached, mineralized, or transported beyond the study area.}, language = {en} } @article{KleinLantuitHeimetal.2021, author = {Klein, Konstantin P. and Lantuit, Hugues and Heim, Birgit and Doxaran, David and Juhls, Bennet and Nitze, Ingmar and Walch, Daniela and Poste, Amanda and S{\o}reide, Janne E.}, title = {The Arctic Nearshore Turbidity Algorithm (ANTA)}, series = {Science of remote sensing}, volume = {4}, journal = {Science of remote sensing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2666-0172}, doi = {10.1016/j.srs.2021.100036}, pages = {11}, year = {2021}, abstract = {The Arctic is greatly impacted by climate change. The increase in air temperature drives the thawing of permafrost and an increase in coastal erosion and river discharge. This leads to a greater input of sediment and organic matter into coastal waters, which substantially impacts the ecosystems by reducing light transmission through the water column and altering the biogeochemistry, but also the subsistence economy of local people, and changes in climate because of the transformation of organic matter into greenhouse gases. Yet, the quantification of suspended sediment in Arctic coastal and nearshore waters remains unsatisfactory due to the absence of dedicated algorithms to resolve the high loads occurring in the close vicinity of the shoreline. In this study we present the Arctic Nearshore Turbidity Algorithm (ANTA), the first reflectance-turbidity relationship specifically targeted towards Arctic nearshore waters that is tuned with in-situ measurements from the nearshore waters of Herschel Island Qikiqtaruk in the western Canadian Arctic. A semi-empirical model was calibrated for several relevant sensors in ocean color remote sensing, including MODIS, Sentinel 3 (OLCI), Landsat 8 (OLI), and Sentinel 2 (MSI), as well as the older Landsat sensors TM and ETM+. The ANTA performed better with Landsat 8 than with Sentinel 2 and Sentinel 3. The application of the ANTA to Sentinel 2 imagery that matches in-situ turbidity samples taken in Adventfjorden, Svalbard, shows transferability to nearshore areas beyond Herschel Island Qikiqtaruk.}, language = {en} }