@article{SalzmannHeimelDuhmetal.2012, author = {Salzmann, Ingo and Heimel, Georg and Duhm, Steffen and Oehzelt, Martin and Pingel, Patrick and George, Benjamin M. and Schnegg, Alexander and Lips, Klaus and Blum, Ralf-Peter and Vollmer, Antje and Koch, Norbert}, title = {Intermolecular hybridization governs molecular electrical doping}, series = {Physical review letters}, volume = {108}, journal = {Physical review letters}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.108.035502}, pages = {5}, year = {2012}, abstract = {Current models for molecular electrical doping of organic semiconductors are found to be at odds with other well-established concepts in that field, like polaron formation. Addressing these inconsistencies for prototypical systems, we present experimental and theoretical evidence for intermolecular hybridization of organic semiconductor and dopant frontier molecular orbitals. Common doping-related observations are attributed to this phenomenon, and controlling the degree of hybridization emerges as a strategy for overcoming the present limitations in the yield of doping-induced charge carriers.}, language = {en} } @article{BerensteinBeta2012, author = {Berenstein, Igal and Beta, Carsten}, title = {Spatiotemporal chaos arising from standing waves in a reaction-diffusion system with cross-diffusion}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {136}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {3}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.3676577}, pages = {4}, year = {2012}, abstract = {We show that quasi-standing wave patterns appear in the two-variable Oregonator model of the Belousov-Zhabotinsky reaction when a cross-diffusion term is added, no wave instability is required in this case. These standing waves have a frequency that is half the frequency of bulk oscillations displayed in the absence of diffusive coupling. The standing wave patterns show a dependence on the systems size. Regular standing waves can be observed for small systems, when the system size is an integer multiple of half the wavelength. For intermediate sizes, irregular patterns are observed. For large sizes, the system shows an irregular state of spatiotemporal chaos, where standing waves drift, merge, and split, and also phase slips may occur.}, language = {en} } @article{TemirbayevZhanabaevTarasovetal.2012, author = {Temirbayev, Amirkhan A. and Zhanabaev, Zeinulla Zh. and Tarasov, Stanislav B. and Ponomarenko, Vladimir I. and Rosenblum, Michael}, title = {Experiments on oscillator ensembles with global nonlinear coupling}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {85}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.85.015204}, pages = {4}, year = {2012}, abstract = {We experimentally analyze collective dynamics of a population of 20 electronic Wien-bridge limit-cycle oscillators with a nonlinear phase-shifting unit in the global feedback loop. With an increase in the coupling strength we first observe formation and then destruction of a synchronous cluster, so that the dependence of the order parameter on the coupling strength is not monotonic. After destruction of the cluster the ensemble remains nevertheless coherent, i.e., it exhibits an oscillatory collective mode (mean field). We show that the system is now in a self-organized quasiperiodic state, predicted in Rosenblum and Pikovsky [Phys. Rev. Lett. 98, 064101 (2007)]. In this state, frequencies of all oscillators are smaller than the frequency of the mean field, so that the oscillators are not locked to the mean field they create and their dynamics is quasiperiodic. Without a nonlinear phase-shifting unit, the system exhibits a standard Kuramoto-like transition to a fully synchronous state. We demonstrate a good correspondence between the experiment and previously developed theory. We also propose a simple measure which characterizes the macroscopic incoherence-coherence transition in a finite-size ensemble.}, language = {en} } @article{LaflammeKolloscheConnoretal.2012, author = {Laflamme, S. and Kollosche, Matthias and Connor, Jerome J. and Kofod, Guggi}, title = {Soft capacitive sensor for structural health monitoring of large-scale systems}, series = {Structural control \& health monitorin}, volume = {19}, journal = {Structural control \& health monitorin}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1545-2263}, doi = {10.1002/stc.426}, pages = {70 -- 81}, year = {2012}, abstract = {Structural integrity of infrastructures can be preserved if damage is diagnosed, localized, and repaired in time. During the past decade, there has been a considerable effort to automate the process of structural health monitoring, which is complicated by the inherent large size of civil structures. Hence, a need has arisen to develop new approaches that enable more effective health monitoring. In this paper, a new sensing technique for damage localization on large civil structures is proposed. Specifically, changes in strain are detected using a capacitance sensor built with a soft, stretchable dielectric polymer with attached stretchable metal film electrodes. A change in strain causes a measurable change in the capacitance of the sensor, which can be directly monitored when the sensor is fixed to a structure. The proposed method is shown here to permit an accurate detection of cracks. The proposed system deploys a layer of dielectric polymer on the surface of a structural element, and regularly monitors any change in capacitance, giving in turn information about the structural state. The smart material is composed of inexpensive silicone elastomers, which make the monitoring system a promising application for large surfaces. Results from tests conducted on small- scale specimens showed that the technology is capable of detecting cracks, and tests conducted on large- size specimens demonstrated that several sensor patches organized on a sensor sheet are capable of localizing a crack. The sensor strain also exhibits a high correlation with the loss of stiffness.}, language = {en} } @article{ThompsonKliemToeroek2012, author = {Thompson, W. T. and Kliem, Bernhard and Toeroek, Tibor}, title = {3D reconstruction of a rotating erupting prominence}, series = {Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics}, volume = {276}, journal = {Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics}, number = {1-2}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-0938}, doi = {10.1007/s11207-011-9868-5}, pages = {241 -- 259}, year = {2012}, abstract = {A bright prominence associated with a coronal mass ejection (CME) was seen erupting from the Sun on 9 April 2008. This prominence was tracked by both the Solar Terrestrial Relations Observatory (STEREO) EUVI and COR1 telescopes, and was seen to rotate about the line of sight as it erupted; therefore, the event has been nicknamed the "Cartwheel CME." The threads of the prominence in the core of the CME quite clearly indicate the structure of a weakly to moderately twisted flux rope throughout the field of view, up to heliocentric heights of 4 solar radii. Although the STEREO separation was 48A degrees, it was possible to match some sharp features in the later part of the eruption as seen in the 304 line in EUVI and in the H alpha-sensitive bandpass of COR1 by both STEREO Ahead and Behind. These features could then be traced out in three-dimensional space, and reprojected into a view in which the eruption is directed toward the observer. The reconstructed view shows that the alignment of the prominence to the vertical axis rotates as it rises up to a leading-edge height of a parts per thousand aEuro parts per thousand 2.5 solar radii, and then remains approximately constant. The alignment at 2.5 solar radii differs by about 115A degrees from the original filament orientation inferred from H alpha and EUV data, and the height profile of the rotation, obtained here for the first time, shows that two thirds of the total rotation are reached within a parts per thousand aEuro parts per thousand 0.5 solar radii above the photosphere. These features are well reproduced by numerical simulations of an unstable moderately twisted flux rope embedded in external flux with a relatively strong shear field component.}, language = {en} } @article{GuptaGuptaLeitenbergeretal.2012, author = {Gupta, Ranjeeta and Gupta, Ajay and Leitenberger, Wolfram and R{\"u}ffer, R.}, title = {Mechanism of stress relaxation in nanocrystalline Fe-N thin films}, series = {Physical review : B, Condensed matter and materials physics}, volume = {85}, journal = {Physical review : B, Condensed matter and materials physics}, number = {7}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.85.075401}, pages = {7}, year = {2012}, abstract = {The mechanism of stress relaxation in nanocrystalline Fe-N thin film has been studied. The as-deposited film possesses a strong in-plane compressive stress which relaxes with thermal annealing. Precise diffusion measurements using nuclear resonance reflectivity show that stress relaxation does not involve any long-range diffusion of Fe atoms. Rather, a redistribution of nitrogen atoms at various interstitial sites, as evidenced by conversion electron Mossbauer spectroscopy, is responsible for the relaxation of internal stresses. On the other hand, formation of the. gamma'-Fe4N phase at temperatures above 523 K involves long-range rearrangement of Fe atoms. The activation energy for Fe self-diffusion is found to be 0.38 +/- 0.04 eV.}, language = {en} } @article{ZuritaSanchezHenkel2012, author = {Zurita-Sanchez, Jorge R. and Henkel, Carsten}, title = {Acoustic waves from mechanical impulses due to fluorescence resonant energy (Forster) transfer Blowing a whistle with light}, series = {epl : a letters journal exploring the frontiers of physics}, volume = {97}, journal = {epl : a letters journal exploring the frontiers of physics}, number = {4}, publisher = {EDP Sciences}, address = {Mulhouse}, issn = {0295-5075}, doi = {10.1209/0295-5075/97/43002}, pages = {6}, year = {2012}, abstract = {We present a momentum transfer mechanism mediated by electromagnetic fields that originates in a system of two nearby molecules: one excited (donor D*) and the other in ground state (acceptor A). An intermolecular force related to fluorescence resonant energy or Forster transfer (FRET) arises in the unstable D* A molecular system, which differs from the equilibrium van der Waals interaction. Due to the its finite lifetime, a mechanical impulse is imparted to the relative motion in the system. We analyze the FRET impulse when the molecules are embedded in free space and find that its magnitude can be much greater than the single recoil photon momentum, getting comparable with the thermal momentum (Maxwell-Boltzmann distribution) at room temperature. In addition, we propose that this FRET impulse can be exploited in the generation of acoustic waves inside a film containing layers of donor and acceptor molecules, when a picosecond laser pulse excites the donors. This acoustic transient is distinguishable from that produced by thermal stress due to laser absorption, and may therefore play a role in photoacoustic spectroscopy. The effect can be seen as exciting a vibrating system like a string or organ pipe with light; it may be used as an opto-mechanical transducer.}, language = {en} } @article{MalikZouMarwanetal.2012, author = {Malik, Nishant and Zou, Y. and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Dynamical regimes and transitions in plio-pleistocene Asian monsoon}, series = {epl : a letters journal exploring the frontiers of physics}, volume = {97}, journal = {epl : a letters journal exploring the frontiers of physics}, number = {4}, publisher = {EDP Sciences}, address = {Mulhouse}, issn = {0295-5075}, doi = {10.1209/0295-5075/97/40009}, pages = {6}, year = {2012}, abstract = {We propose a novel approach based on the fluctuation of similarity to identify regimes of distinct dynamical complexity in short time series. A statistical test is developed to estimate the significance of the identified transitions. Our method is verified by uncovering bifurcation structures in several paradigmatic models, providing more complex transitions compared with traditional Lyapunov exponents. In a real-world situation, we apply this method to identify millennial-scale dynamical transitions in Plio-Pleistocene proxy records of the South Asian summer monsoon system. We infer that many of these transitions are induced by the external forcing of the solar insolation and are also affected by internal forcing on Monsoonal dynamics, i.e., the glaciation cycles of the Northern Hemisphere and the onset of the Walker circulation.}, language = {en} } @article{DraganovaRichterFechner2012, author = {Draganova, Nadya and Richter, Philipp and Fechner, Cora}, title = {High-resolution observations of two O VI absorbers at z approximate to 2 toward PKS 1448-232}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {538}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {1}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201116730}, pages = {8}, year = {2012}, abstract = {To explore the ionization conditions in highly-ionized absorbers at high redshift, we study in detail two intervening O vi absorbers at z approximate to 2 toward the quasar PKS 1448-232, based on high (R approximate to 75 000) and intermediate (R approximate to 45 000) resolution optical VLT/UVES spectra. We find that both absorption systems are composed of several narrow subcomponents with typical Civ/O VI Doppler-parameters of b < 10 km s(-1). This implies that the gas temperatures are T < 10(5) K and that the absorbers are photoionized by the UV background. The system at z = 2.1098 represents a simple, isolated O VI absorber that has only two absorption components and is relatively metal-rich (Z similar to 0.6 solar). Ioinization modeling implies that the system is photoionized with O VI, C IV, and H I coexisting in the same gas phase. The second system at z = 2.1660 represents a complicated, multi-component absorption system with eight O VI components spanning almost 300 km s(-1) in radial velocity. The photoionization modeling implies that the metallicity is non-uniform and relatively low (<= 0.1 solar) and that the O VI absorption must arise in a gas phase that differs from that traced by C IV, C III, and H I. Our detailed study of the two O VI systems towards PKS 1448-232 shows that multi-phase, multi-component high-ion absorbers similar to the one at z = 2.1660 can be described by applying a detailed ionization modeling of the various subcomponents to obtain reliable measurements of the physical conditions and the metal abundances in the gas.}, language = {en} } @article{HenaultBrunetOskinovaGuerreroetal.2012, author = {Henault-Brunet, V. and Oskinova, Lida and Guerrero, Mart{\´i}n A. and Sun, W. and Chu, Y.-H. and Evans, C. J. and Gallagher, J. S. and Gruendl, R. A. and Reyes-Iturbide, J.}, title = {Discovery of a Be/X-ray pulsar binary and associated supernova remnant in the wing of the small magellanic cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {420}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0035-8711}, doi = {10.1111/j.1745-3933.2011.01183.x}, pages = {L13 -- L17}, year = {2012}, abstract = {We report on a new Be/X-ray pulsar binary located in the Wing of the Small Magellanic Cloud (SMC). The strong pulsed X-ray source was discovered with the Chandra and XMM-Newton X-ray observatories. The X-ray pulse period of 1062 s is consistently determined from both Chandra and XMM-Newton observations, revealing one of the slowest rotating X-ray pulsars known in the SMC. The optical counterpart of the X-ray source is the emission-line star 2dFS 3831. Its B0-0.5(III)e+ spectral type is determined from VLT-FLAMES and 2dF optical spectroscopy, establishing the system as a Be/X-ray binary (Be-XRB). The hard X-ray spectrum is well fitted by a power law with additional thermal and blackbody components, the latter reminiscent of persistent Be-XRBs. This system is the first evidence of a recent supernova in the low-density surroundings of NGC602. We detect a shell nebula around 2dFS 3831 in H alpha and [OIII] images and conclude that it is most likely a supernova remnant. If it is linked to the supernova explosion that created this new X-ray pulsar, its kinematic age of (2-4) x 10(4) yr provides a constraint on the age of the pulsar.}, language = {en} }