@article{ZaksRosenblumPikovskijetal.1997, author = {Zaks, Michael A. and Rosenblum, Michael and Pikovskij, Arkadij and Osipov, Grigory V. and Kurths, J{\"u}rgen}, title = {Phase synchronization of chaotic oscillations in terms of periodic orbits}, issn = {1054-1500}, year = {1997}, language = {en} } @article{PikovskijRosenblumOsipovetal.1997, author = {Pikovskij, Arkadij and Rosenblum, Michael and Osipov, Grigory V. and Kurths, J{\"u}rgen}, title = {Phase synchronization effects in a lattice of nonidentical R{\"o}ssler oscillators}, year = {1997}, language = {en} } @article{RosenblumOsipovPikovskijetal.1997, author = {Rosenblum, Michael and Osipov, Grigory V. and Pikovskij, Arkadij and Kurths, J{\"u}rgen}, title = {Phase synchronization of chaotic oscillators by external driving}, year = {1997}, language = {en} } @article{OsipovRosenblumPikovskijetal.1997, author = {Osipov, Grigory V. and Rosenblum, Michael and Pikovskij, Arkadij and Zaks, Michael A. and Kurths, J{\"u}rgen}, title = {Attractor-repeller collision and eyelet intermittency at the transition to phase synchronization}, year = {1997}, abstract = {The chaotically driven circle map is considered as the simplest model ofphase synchronization of a chaotic continuous-time oscillator by external periodic force. The phase dynamics is analyzed via phase-locking regions of the periodic cycles embedded in the strange attractor. It is shown that full synchronization, where all the periodic cycles are phase locked, disappears via the attractor-repeller collision. Beyond the transition an intermittent regime with exponentially rare phase slips, resulting from the trajectory's hits on an eyelet, is observed.}, language = {en} } @article{ScheffczykKrampeEngbertetal.1997, author = {Scheffczyk, Christian and Krampe, Ralf-Thomas and Engbert, Ralf and Rosenblum, Michael and Kurths, J{\"u}rgen and Kliegl, Reinhold}, title = {Tempo-induced transitions in polyrhythmic hand movements}, year = {1997}, abstract = {We investigate the cognitive control in polyrhythmic hand movements as a model paradigm for bimanual coordination. Using a symbolic coding of the recorded time series, we demonstrate the existence of qualitative transitions induced by experimental manipulation of the tempo. A nonlinear model with delayed feedback control is proposed, which accounts for these dynamical transitions in terms of bifurcations resulting from variation of the external control parameter. Furthermore, it is shown that transitions can also be observed due to fluctuations in the timing control level. We conclude that the complexity of coordinated bimanual movements results from interactions between nonlinear control mechanisms with delayed feedback and stochastic timing components.}, language = {en} } @article{SchiekScheffczykEngbertetal.1997, author = {Schiek, Michael and Scheffczyk, Christian and Engbert, Ralf and Kurths, J{\"u}rgen and Krampe, Ralf-Thomas and Kliegl, Reinhold and Drepper, Friedhelm R.}, title = {Symbolic dynamics of physiological synchronisation : examples from bimanual movements and cardiorespiratory interaction}, year = {1997}, abstract = {Key words: Nonlinear time series analysis, symbolic dynamics, phase transitions, physiological data, biological synchronization, production of polyrhythms, cardiorespiratory interaction, variation of control parameter}, language = {en} }