@article{RasserScheibnerMutti2005, author = {Rasser, Michael W. and Scheibner, C and Mutti, Maria}, title = {A paleoenvironmental standard section for Early Ilerdian tropical carbonate factories (Corbieres, France; Pyrenees, Spain)}, year = {2005}, abstract = {Early Ilerdian (Early Eocene, Shallow Benthic Zones 5 and 6) carbonate systems of the Pyrenees shelf were deposited after a time of severe climatic ('Paleocene-Eocene Thermal Maximum, PETM') and phylogenetic ('Larger Foraminifer Turnover') changes. They reflect the radiation of nummulitid, alveolinid, and orbitolitid larger foraminifera after remarkable biotic changes at the end of the Paleocene, and announce their subsequent flourishing in the Middle Eocene. A paleoenvironmental model for tropical carbonate environments of this particular time interval is provided herein. During the Early Ilerdian, the inner and middle ramp deposits from Minerve, Campo and Serraduy revealed the end-member of a tropical carbonate factory with carbonate production dominated by the end-members of biotically (photo-autotrophic skeletal) controlled and biotically induced carbonate precipitation. Inner platform environments are dominated by alveolinids and in part by orbitolitids, middle platform environments are dominated by nummulitids. Corals are present, but they do not form reefs, which is a typical feature for the Eocene. Nummulite shoal complexes, which are well-known from the Middle Eocene are also absent during the studied Early Ilerdian interval, which may reflect the early evolutionary stage of this group}, language = {en} } @article{MuttiDroxlerCunningham2005, author = {Mutti, Maria and Droxler, A. W. and Cunningham, A. D.}, title = {Evolution of the Northern Nicaragua Rise during the Oligocene-Miocene : Drowning by environmental factors}, issn = {0037-0738}, year = {2005}, abstract = {Possible causes to explain platform drowning have been hotly debated by carbonate sedimentologists for more than a decade now. In this paper, we present multiple evidence to explain the drowning of a carbonate megabank that covered most of the modem Northern Nicaragua Rise (NNR) during an interval spanning from late Oligocene to early Miocene by the interaction of several environmental factors. The recovery during ODP Leg 165 of late Oligocene to middle Miocene sedimentary sequences in the sub-seafloor of the modern channels and basin, Pedro Channel and Walton Basin, respectively, that dissect the NNR (Site 1000) and south of the rise in the Colombian Basin (Site 999), combined with information from dredged rock samples, allows us to explore in more detail the timing and possible mechanisms responsible for the drowning of the megabank and its relationship to Miocene climate change. The modern system of isolated banks and shelves dissected by a series of intervening seaways and basins on the NNR has evolved from a continuous, shallow-water carbonate "megabank' that extended from the Honduras/Nicaraguan mainland to the modern island of Jamaica. Available information suggests that this megabank broke apart and partially drowned in the late part of the late Oligocene at around 27 Ma and finally foundered during the late early Miocene around 20 Ma, resulting in limited neritic coral growth in the areas where the modern isolated carbonate banks and shelves are occurring today. Available information also suggests that the southern and central parts of Pedro Channel were already a deep-water area before the major episode of platform drowning, and its formation predates the initiation of the Caribbean Current. However, after the partial drowning of the megabank, the channel has become a major pathway for the Caribbean Current. Stratigraphic units identified in deep-water carbonates sampled at ODP Sites 999 and 1000 help to constrain the environmental setting leading to the drowning of the banks. Changes in lithology and mass accumulation rates of both the carbonate and non-carbonate fraction parallel stable isotope shifts and likely indicate regional changes in climate and circulation during the late Oligocene-middle Miocene interval. Carbonate mass accumulation rates (MARS) at Site 999 suggest increased regional productivity during the early Miocene. Terrigenous MARS at both Sites 999 and 1000 show a general increase from the Burdigalian through the Serravallian. The temporal association among episodes of neritic platform deposition, followed by increased productivity as identified by higher carbonate MARs and positive excursion in carbon isotopes, suggests that oceanographic changes such as local upwelling and nutrification have led to the partial drowning of the NNR "megabank". (c) 2005 Elsevier B.V. All rights reserved}, language = {en} } @article{JohnMutti2005, author = {John, Cedric Michael and Mutti, Maria}, title = {Relative control of paleoceanography, climate, and eustasy over heterozoan carbonates : a perspective from slope sediments of the Marion Plateau (ODP LEG 194)}, issn = {1527-1404}, year = {2005}, abstract = {In this paper we explore the relative control of paleoceanography, eustasy, and water temperature over the evolution of a carbonate slope system deposited on the Marion Plateau (Northeastern Australia). Growth of several carbonate platforms started in the early Miocene on this plateau, and although they occurred in low-latitude subtropical waters they are composed mainly of heterozoan organisms. We investigated an upper to distal slope transect drilled during ODP Leg 194 and located close to the Northern Marion Platform. We reconstructed mass accumulation rates of carbonate as well as the evolution in the ratios of carbon and oxygen stable isotopes. Power spectrum analysis of the carbon isotope record revealed the existence of cycles with main frequencies centered around 409 Kyr and 1800 Kyr. We interpret the 409 Kyr cycle as being paced by changes in the eccentricity of the Earth orbit, and we suggest that the 1800 Kyr cycle could be linked to long-term eustatic changes. Finally, on the basis of the timing of changes in mass accumulation rates of carbonate we infer that the strength and direction of oceanic currents affected sedimentation on the Marion Plateau by shifting depocenters of slope sedimentation, a process probably further modulated by sea-level changes. We argue that the evolution and demise of the heterozoan carbonate systems present on the Marion Plateau were controlled mainly by the evolution of strong benthic currents, and that eustasy and water temperature alone did not account for the drowning of the platforms in the mid Miocene}, language = {en} } @article{HalfarMutti2005, author = {Halfar, Jochen and Mutti, Maria}, title = {Global dominance of coralline red-algal facies : a response to Miocene oceanographic events}, issn = {0091-7613}, year = {2005}, abstract = {Rhodoliths (free-living coralline red algae) can thrive under a wide range of temperatures, reduced light, and increased nutrient levels, and often form a distinct so-called rhodalgal lithofacies that is an important component of Cenozoic shallow-water carbonates. Global distributions illustrate that from the late-early to early-late Miocene (Burdigalian-early Tortonian), rhodalgal facies reached peak abundances and commonly replaced coral-reef environments, accompanied by a decline in other carbonate-producing phototrophs. We argue that the dominance of red algae over coral reefs was triggered in the Burdigalian by enhanced trophic resources associated with a global increase in productivity, as evidenced by a long-term shift toward higher carbon isotope values. Rhodalgal lithofacies expanded further in the middle Miocene when strengthened thermal gradients associated with the establishment of the East Antarctic lee Sheet led to enhanced upwelling while climate change generated increased weathering rates, introducing land-derived nutrients into the oceans. Globally cooler temperatures following a climatic optimum in the early-middle Miocene contributed to sustain the dominance of red algae and prevented the recovery of coral reefs. The global shift in nearshore shallow-water carbonate producers to groups tolerant of higher levels of trophic resources provides further evidence for increased nutrient levels during that time interval and shows the sensitivity of shallow-water carbonate facies as indicators of past oceanographic conditions}, language = {en} }