@article{DuesterhoeftdeCapitani2013, author = {D{\"u}sterh{\"o}ft, Erik and de Capitani, Christian}, title = {Theriak_D - an add-on to implement equilibrium computations in geodynamic models}, series = {Geochemistry, geophysics, geosystems}, volume = {14}, journal = {Geochemistry, geophysics, geosystems}, number = {11}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1002/ggge.20286}, pages = {4962 -- 4967}, year = {2013}, abstract = {This study presents the theory, applicability, and merits of the new THERIAK_D add-on for the open source Theriak/Domino software package. The add-on works as an interface between Theriak and user-generated scripts, providing the opportunity to process phase equilibrium computation parameters in a programming environment (e. g., C or MATLABV (R)). THERIAK_D supports a wide range of features such as calculating the solid rock density or testing the stability of mineral phases along any pressure-temperature (P-T) path and P-T grid. To demonstrate applicability, an example is given in which the solid rock density of a 2-D-temperature-pressure field is calculated, portraying a simplified subduction zone. Consequently, the add-on effectively combines thermodynamics and geodynamic modeling. The carefully documented examples could be easily adapted for a broad range of applications. THERIAK_D is free, and the program, user manual, and source codes may be downloaded from http://www.min.unikiel.de/similar to ed/theriakd/.}, language = {en} } @article{LiuSobolevBabeykoetal.2022, author = {Liu, Sibiao and Sobolev, Stephan and Babeyko, Andrey and Pons, Micha{\"e}l}, title = {Controls of the foreland deformation pattern in the orogen-foreland shortening system}, series = {Tectonics}, volume = {41}, journal = {Tectonics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2021TC007121}, pages = {18}, year = {2022}, abstract = {Controls on the deformation pattern (shortening mode and tectonic style) of orogenic forelands during lithospheric shortening remain poorly understood. Here, we use high-resolution 2D thermomechanical models to demonstrate that orogenic crustal thickness and foreland lithospheric thickness significantly control the shortening mode in the foreland. Pure-shear shortening occurs when the orogenic crust is not thicker than the foreland crust or thick, but the foreland lithosphere is thin (<70-80 km, as in the Puna foreland case). Conversely, simple-shear shortening, characterized by foreland underthrusting beneath the orogen, arises when the orogenic crust is much thicker. This thickened crust results in high gravitational potential energy in the orogen, which triggers the migration of deformation to the foreland under further shortening. Our models present fully thick-skinned, fully thin-skinned, and intermediate tectonic styles in the foreland. The first tectonics forms in a pure-shear shortening mode whereas the others require a simple-shear mode and the presence of thick (>similar to 4 km) sediments that are mechanically weak (friction coefficient