@article{PerovicQinOschatz2020, author = {Perovic, Milena and Qin, Qing and Oschatz, Martin}, title = {From molecular precursors to nanoparticles}, series = {Advanced functional materials}, volume = {30}, journal = {Advanced functional materials}, number = {41}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201908371}, pages = {21}, year = {2020}, abstract = {Nanoporous carbon materials (NCMs) provide the "function" of high specific surface area and thus have large interface area for interactions with surrounding species, which is of particular importance in applications related to adsorption processes. The strength and mechanism of adsorption depend on the pore architecture of the NCMs. In addition, chemical functionalization can be used to induce changes of electron density and/or electron density distribution in the pore walls, thus further modifying the interactions between carbons and guest species. Typical approaches for functionalization of nanoporous materials with regular atomic construction like porous silica, metal-organic frameworks, or zeolites, cannot be applied to NCMs due to their less defined local atomic construction and abundant defects. Therefore, synthetic strategies that offer a higher degree of control over the process of functionalization are needed. Synthetic approaches for covalent functionalization of NCMs, that is, for the incorporation of heteroatoms into the carbon backbone, are critically reviewed with a special focus on strategies following the concept "from molecules to materials." Approaches for coordinative functionalization with metallic species, and the functionalization by nanocomposite formation between pristine carbon materials and heteroatom-containing carbons, are introduced as well. Particular focus is given to the influences of these functionalizations in adsorption-related applications.}, language = {en} } @phdthesis{Hess2021, author = {Hess, Andreas}, title = {Synthese von funktionalisierbaren und abbaubaren Polymersystemen mit Disulfiden}, school = {Universit{\"a}t Potsdam}, pages = {v, 135}, year = {2021}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Synthese von Disulfiden, der Thiol-Disulfid Metathesereaktion als M{\"o}glichkeit, Polymere zu funktionalisieren, und der Synthese von Polydisulfiden. Im ersten Teil der Arbeit wird die Aminolyse von RAFT-Polymeren und die Abh{\"a}ngigkeit der Polymer-Polymer Disulfidbildung von der Molmasse untersucht. Dabei wurde durch die Aufnahme von Reaktionskinetiken mittels Gel-Permeations-Chromatographie (GPC) festgestellt, dass je l{\"a}nger die Polymerketten sind, desto weniger Disulfid Polymerkopplung tritt auf. RAFT-Polymere werden oft genutzt, um die RAFT-Polymer Endgruppe nach der Polymerisation zu modifizieren oder in einer chemischen Reaktion zu funktionalisieren. Hier kann die Aminolyse in Anwesenheit von kurzkettigen Disulfiden, wie zum Beispiel Cystin, durchgef{\"u}hrt werden, um die Bildung von Polymer-Polymer Disulfiden vollst{\"a}ndig zu unterdr{\"u}cken und ein endgruppenfunktionalisiertes Polymer zu erhalten. Bei dieser Reaktion greift das bei der Aminolyse entstehende Polymerthiolat die kurzkettigen Disulfide an, und es kommt zur Bildung von funktionalisierten Polymeren. Es wurde ein Polyethylenglykoldisulfid eingesetzt, um ein amphiphiles Blockcopolymer zu erhalten. Als RAFT-Polymer wurde Polystyrol (PS) verwendet, und es konnte die Bildung von Polystyrol-Polyethylenglykol Copolymeren nachgewiesen werden. Das amphiphile Polymer bildet im w{\"a}ssrigen Medium Vesikel. Die Oberfl{\"a}che der Vesikel konnte mittels der Thiol-Disulfid Metathese umfunktionalisiert werden. Die Aminolyse von PS RAFT-Polymeren mit einem Polylaktiddisulfid oder einem Polybenzylglutamatdisulfid ergab Polystyrol-block-Polyester und Polystyrol-block-Polyaminos{\"a}uren Copolymere. Im zweiten Teil der Arbeit liegt der Fokus auf der Synthese von Polydisulfiden und ihren thermischen Eigenschaften. Es wurden verschiedene Alkyldithiole synthetisiert und mittels Wasserstoffperoxid und Triethylamin polymerisiert. Dabei konnte gezeigt werden, dass die Polymere teilkristallin sind und dass der Schmelzpunkt und die Kristallinit{\"a}t der Polymere mit steigender Alkylkettenl{\"a}nge zwischen den Disulfidbindungen zunehmen. Die M{\"o}glichkeit einer Polymerkettenerweiterung nach der Polymerisation ist mit diesem System gegeben. Die Abbaubarkeit der Polydisulfide konnte durch den Einsatz von Thiolen im basischen Milieu gezeigt werden.}, language = {de} }