@article{LangeReiterPaetzeletal.2014, author = {Lange, Ilja and Reiter, Sina and Paetzel, Michael and Zykov, Anton and Nefedov, Alexei and Hildebrandt, Jana and Hecht, Stefan and Kowarik, Stefan and Woell, Christof and Heimel, Georg and Neher, Dieter}, title = {Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers}, series = {Advanced functional materials}, volume = {24}, journal = {Advanced functional materials}, number = {44}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201401493}, pages = {7014 -- 7024}, year = {2014}, abstract = {Zinc oxide (ZnO) is regarded as a promising alternative material for transparent conductive electrodes in optoelectronic devices. However, ZnO suffers from poor chemical stability. ZnO also has a moderate work function (WF), which results in substantial charge injection barriers into common (organic) semiconductors that constitute the active layer in a device. Controlling and tuning the ZnO WF is therefore necessary but challenging. Here, a variety of phosphonic acid based self-assembled monolayers (SAMs) deposited on ZnO surfaces are investigated. It is demonstrated that they allow the tuning the WF over a wide range of more than 1.5 eV, thus enabling the use of ZnO as both the hole-injecting and electron-injecting contact. The modified ZnO surfaces are characterized using a number of complementary techniques, demonstrating that the preparation protocol yields dense, well-defined molecular monolayers.}, language = {en} } @article{FandrichBullerSchaeferetal.2015, author = {Fandrich, Artur and Buller, Jens and Sch{\"a}fer, Daniel and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Lisdat, Fred}, title = {Electrochemical characterization of a responsive macromolecular interface on gold}, series = {Physica status solidi : A, Applications and materials science}, volume = {212}, journal = {Physica status solidi : A, Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201431698}, pages = {1359 -- 1367}, year = {2015}, abstract = {This study reports on the investigation of a thermoresponsive polymer as a thin film on electrodes and the influence of coupling a peptide and an antibody to the film. The utilized polymer from the class of poly(oligoethylene glycol)-methacrylate polymers (poly(OEGMA)) with carboxy functions containing side chains was synthesized and properly characterized in aqueous solutions. The dependence of the cloud point on the pH of the surrounding media is discussed. The responsive polymer was immobilized on gold electrodes as shown by electrochemical, quartz crystal microbalance (QCM), and atomic force microscopy (AFM) techniques. The temperature dependent behavior of the polymer covalently grafted to gold substrates is investigated using cyclic voltammetry (CV) in ferro-/ferricyanide solution. Significant changes in the slope of the temperature-dependence of the voltammetric peak current and the peak separation values clearly indicate the thermally induced conformational change on the surface. Finally, a biorecognition reaction between a short FLAG peptide (N-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys-C) covalently immobilized on the polymer interface and the corresponding IgG antibody was performed. The study shows that the responsiveness of the electrode is retained after peptide coupling and antibody binding, although the response is diminished.}, language = {en} }