@article{BuljakOeschBruno2019, author = {Buljak, Vladimir and Oesch, Tyler and Bruno, Giovanni}, title = {Simulating Fiber-Reinforced Concrete Mechanical Performance Using CT-Based Fiber Orientation Data}, series = {Materials}, volume = {12}, journal = {Materials}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma12050717}, pages = {16}, year = {2019}, abstract = {The main hindrance to realistic models of fiber-reinforced concrete (FRC) is the local materials property variation, which does not yet reliably allow simulations at the structural level. The idea presented in this paper makes use of an existing constitutive model, but resolves the problem of localized material variation through X-ray computed tomography (CT)-based pre-processing. First, a three-point bending test of a notched beam is considered, where pre-test fiber orientations are measured using CT. A numerical model is then built with the zone subjected to progressive damage, modeled using an orthotropic damage model. To each of the finite elements within this zone, a local coordinate system is assigned, with its longitudinal direction defined by local fiber orientations. Second, the parameters of the constitutive damage model are determined through inverse analysis using load-displacement data obtained from the test. These parameters are considered to clearly explain the material behavior for any arbitrary external action and fiber orientation, for the same geometrical properties and volumetric ratio of fibers. Third, the effectiveness of the resulting model is demonstrated using a second, control experiment. The results of the control experiment analyzed in this research compare well with the model results. The ultimate strength was predicted with an error of about 6\%, while the work-of-load was predicted within 4\%. It demonstrates the potential of this method for accurately predicting the mechanical performance of FRC components.}, language = {en} } @article{OeschWeiseBruno2020, author = {Oesch, Tyler and Weise, Frank and Bruno, Giovanni}, title = {Detection and quantification of cracking in concrete aggregate through virtual data fusion of X-ray computed tomography images}, series = {Materials}, volume = {13}, journal = {Materials}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma13183921}, pages = {27}, year = {2020}, abstract = {In this work, which is part of a larger research program, a framework called "virtual data fusion" was developed to provide an automated and consistent crack detection method that allows for the cross-comparison of results from large quantities of X-ray computed tomography (CT) data. A partial implementation of this method in a custom program was developed for use in research focused on crack quantification in alkali-silica reaction (ASR)-sensitive concrete aggregates. During the CT image processing, a series of image analyses tailored for detecting specific, individual crack-like characteristics were completed. The results of these analyses were then "fused" in order to identify crack-like objects within the images with much higher accuracy than that yielded by any individual image analysis procedure. The results of this strategy demonstrated the success of the program in effectively identifying crack-like structures and quantifying characteristics, such as surface area and volume. The results demonstrated that the source of aggregate has a very significant impact on the amount of internal cracking, even when the mineralogical characteristics remain very similar. River gravels, for instance, were found to contain significantly higher levels of internal cracking than quarried stone aggregates of the same mineralogical type.}, language = {en} }