@article{PicozziParolaiBindietal.2009, author = {Picozzi, Matteo and Parolai, Stefano and Bindi, Dino and Strollo, Angelo}, title = {Characterization of shallow geology by high-frequency seismic noise tomography}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2008.03966.x}, year = {2009}, abstract = {To study the applicability of the passive seismic interferometry technique to near-surface geological studies, seismic noise recordings from a small scale 2-D array of seismic stations were performed in the test site of Nauen (Germany). Rayleigh wave Green's functions were estimated for different frequencies. A tomographic inversion of the traveltimes estimated for each frequency from the Green's functions is then performed, allowing the laterally varying 3-D surfacewave velocity structure below the array to be retrieved at engineering-geotechnical scales. Furthermore, a 2-D S-wave velocity cross-section is obtained by combining 1-D velocity structures derived from the inversion of the dispersion curves extracted at several points along a profile where other geophysical analyses were performed. It is shown that the cross-section from passive seismic interferometry provides a clear image of the local structural heterogeneities that are in excellent agreement with georadar and geoelectrical results. Such findings indicate that the interferometry analysis of seismic noise is potentially of great interest for deriving the shallow 3-D velocity structure in urban areas.}, language = {en} } @article{BindiMarzoratiParolaietal.2009, author = {Bindi, Dino and Marzorati, Simone and Parolai, Stefano and Strollo, Angelo and Jaeckel, Karl-Heinz}, title = {Empirical spectral ratios estimated in two deep sedimentary basins using microseisms recorded by short-period seismometers}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2008.03958.x}, year = {2009}, abstract = {In this work, we analyse continuous measurements of microseisms to assess the reliability of the fundamental resonance frequency estimated by means of the horizontal-to-vertical (H/V) spectral ratio within the 0.1-1 Hz frequency range, using short-period sensors (natural period of 1 s). We apply the H/V technique to recordings of stations installed in two alluvial basins with different sedimentary cover thicknesses-the Lower Rhine Embayment (Germany) and the Gubbio Plain (Central Italy). The spectral ratios are estimated over the time-frequency domain, and we discuss the reliability of the results considering both the variability of the microseism activity and the amplitude of the instrumental noise. We show that microseisms measured by short period sensors allow the retrieval of fundamental resonance frequencies greater than about 0.1-0.2 Hz, with this lower frequency bound depending on the relative amplitude of the microseism signal and the self-noise of the instruments. In particular, we show an example where the considered short-period sensor is connected to instruments characterized by an instrumental noise level which allows detecting only fundamental frequencies greater than about 0.4 Hz. Since the frequency at which the peak of the H/V spectral ratio is biased depends upon the seismic signal-to-instrument noise ratio, the power spectral amplitude of instrumental self- noise should be always considered when interpreting the frequency of the peak as the fundamental resonance frequency of the investigated site.}, language = {en} } @article{DiGiacomoBindiParolaietal.2011, author = {Di Giacomo, Domenico and Bindi, Dino and Parolai, Stefano and Oth, Adrien}, title = {Residual analysis of teleseismic P-wave energy magnitude estimates: inter- and intrastation variability}, series = {Geophysical journal international}, volume = {185}, journal = {Geophysical journal international}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2011.05019.x}, pages = {1444 -- 1454}, year = {2011}, abstract = {P>Computing the magnitude of an earthquake requires correcting for the propagation effects from the source to the receivers. This is often accomplished by performing numerical simulations using a suitable Earth model. In this work, the energy magnitude M(e) is considered and its determination is performed using theoretical spectral amplitude decay functions over teleseismic distances based on the global Earth model AK135Q. Since the high frequency part (above the corner frequency) of the source spectrum has to be considered in computing M(e), the influence of propagation and site effects may not be negligible and they could bias the single station M(e) estimations. Therefore, in this study we assess the inter- and intrastation distributions of errors by considering the M(e) residuals computed for a large data set of earthquakes recorded at teleseismic distances by seismic stations deployed worldwide. To separate the inter- and intrastation contribution of errors, we apply a maximum likelihood approach to the M(e) residuals. We show that the interstation errors (describing a sort of site effect for a station) are within +/- 0.2 magnitude units for most stations and their spatial distribution reflects the expected lateral variation affecting the velocity and attenuation of the Earth's structure in the uppermost layers, not accounted for by the 1-D AK135Q model. The variance of the intrastation error distribution (describing the record-to-record component of variability) is larger than the interstation one (0.240 against 0.159), and the spatial distribution of the errors is not random but shows specific patterns depending on the source-to-station paths. The set of coefficients empirically determined may be used in the future to account for the heterogeneities of the real Earth not considered in the theoretical calculations of the spectral amplitude decay functions used to correct the recorded data for propagation effects.}, language = {en} } @article{StrolloParolaiBindietal.2012, author = {Strollo, Angelo and Parolai, Stefano and Bindi, Dino and Chiauzzi, Leonardo and Pagliuca, Rossella and Mucciarelli, Marco and Zschau, Jochen}, title = {Microzonation of Potenza (Southern Italy) in terms of spectral intensity ratio using joint analysis of earthquakes and ambient noise}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {10}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-011-9256-4}, pages = {493 -- 516}, year = {2012}, abstract = {A temporary seismic network composed of 11 stations was installed in the city of Potenza (Southern Italy) to record local and regional seismicity within the context of a national project funded by the Italian Department of Civil Protection (DPC). Some stations were moved after a certain time in order to increase the number of measurement points, leading to a total of 14 sites within the city by the end of the experiment. Recordings from 26 local earthquakes (M-l 2.2-3.8 ) were analyzed to compute the site responses at the 14 sites by applying both reference and non-reference site techniques. Furthermore, the Spectral Intensity (SI) for each local earthquake, as well as their ratios with respect to the values obtained at a reference site, were also calculated. In addition, a field survey of 233 single station noise measurements within the city was carried out to increase the information available at localities different from the 14 monitoring sites. By using the results of the correlation analysis between the horizontal-to-vertical spectral ratios computed from noise recordings (NHV) at the 14 selected sites and those derived by the single station noise measurements within the town as a proxy, the spectral intensity correction factors for site amplification obtained from earthquake analysis were extended to the entire city area. This procedure allowed us to provide a microzonation map of the urban area that can be directly used when calculating risk scenarios for civil defence purposes. The amplification factors estimated following this approach show values increasing along the main valley toward east where the detrital and alluvial complexes reach their maximum thickness.}, language = {en} } @article{DouglasAkkarAmerietal.2014, author = {Douglas, John and Akkar, Sinan and Ameri, Gabriele and Bard, Pierre-Yves and Bindi, Dino and Bommer, Julian J. and Bora, Sanjay Singh and Cotton, Fabrice Pierre and Derras, Boumediene and Hermkes, Marcel and Kuehn, Nicolas Martin and Luzi, Lucia and Massa, Marco and Pacor, Francesca and Riggelsen, Carsten and Sandikkaya, M. Abdullah and Scherbaum, Frank and Stafford, Peter J. and Traversa, Paola}, title = {Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {12}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-013-9522-8}, pages = {341 -- 358}, year = {2014}, abstract = {This article presents comparisons among the five ground-motion models described in other articles within this special issue, in terms of data selection criteria, characteristics of the models and predicted peak ground and response spectral accelerations. Comparisons are also made with predictions from the Next Generation Attenuation (NGA) models to which the models presented here have similarities (e.g. a common master database has been used) but also differences (e.g. some models in this issue are nonparametric). As a result of the differing data selection criteria and derivation techniques the predicted median ground motions show considerable differences (up to a factor of two for certain scenarios), particularly for magnitudes and distances close to or beyond the range of the available observations. The predicted influence of style-of-faulting shows much variation among models whereas site amplification factors are more similar, with peak amplification at around 1s. These differences are greater than those among predictions from the NGA models. The models for aleatory variability (sigma), however, are similar and suggest that ground-motion variability from this region is slightly higher than that predicted by the NGA models, based primarily on data from California and Taiwan.}, language = {en} } @article{ZoellerUllahBindietal.2017, author = {Z{\"o}ller, Gert and Ullah, Shahid and Bindi, Dino and Parolai, Stefano and Mikhailova, Natalya}, title = {The largest expected earthquake magnitudes in Central Asia}, series = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, volume = {432}, journal = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, publisher = {The Geological Society}, address = {London}, isbn = {978-1-86239-745-3}, issn = {0305-8719}, doi = {10.1144/SP432.3}, pages = {29 -- 40}, year = {2017}, abstract = {The knowledge of the largest expected earthquake magnitude in a region is one of the key issues in probabilistic seismic hazard calculations and the estimation of worst-case scenarios. Earthquake catalogues are the most informative source of information for the inference of earthquake magnitudes. We analysed the earthquake catalogue for Central Asia with respect to the largest expected magnitudes m(T) in a pre-defined time horizon T-f using a recently developed statistical methodology, extended by the explicit probabilistic consideration of magnitude errors. For this aim, we assumed broad error distributions for historical events, whereas the magnitudes of recently recorded instrumental earthquakes had smaller errors. The results indicate high probabilities for the occurrence of large events (M >= 8), even in short time intervals of a few decades. The expected magnitudes relative to the assumed maximum possible magnitude are generally higher for intermediate-depth earthquakes (51-300 km) than for shallow events (0-50 km). For long future time horizons, for example, a few hundred years, earthquakes with M >= 8.5 have to be taken into account, although, apart from the 1889 Chilik earthquake, it is probable that no such event occurred during the observation period of the catalogue.}, language = {en} } @article{KothaBindiCotton2017, author = {Kotha, Sreeram Reddy and Bindi, Dino and Cotton, Fabrice Pierre}, title = {Site-Corrected Magnitude- and Region-Dependent Correlations of Horizontal Peak Spectral Amplitudes}, series = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, volume = {33}, journal = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, publisher = {Earthquake Engineering Research Institute}, address = {Oakland}, issn = {8755-2930}, doi = {10.1193/091416EQS150M}, pages = {1415 -- 1432}, year = {2017}, abstract = {Empirical correlations of horizontal peak spectral amplitudes (PSA) are modeled using the total-residuals obtained in a ground motion prediction equation (GMPE) regression. Recent GMPEs moved toward partially non-ergodic region-and site-specific predictions, while the residual correlation models remained largely ergodic. Using mixed-effects regression, we decompose the total-residuals of a pan-European GMPE into between-event, between-site, and event-and-site corrected residuals to investigate the ergodicity in empirical PSA correlations. We first observed that the between-event correlations are magnitude-dependent, partially due to the differences in source spectra, and influence of stress-drop parameter on small and large events. Next, removing the between-site residuals from within-event residuals yields the event-and-site corrected residuals which are found to be region-dependent, possibly due to the regional differences in distance-decay of short period PSAs. Using our site-corrected magnitude- and region-dependent correlations, and the between-site residuals as empirical site-specific ground motion adjustments, we compute partially non-ergodic conditional mean spectra at four well-recorded sites in Europe and Middle Eastern regions.}, language = {en} } @article{KothaBindiCotton2017, author = {Kotha, Sreeram Reddy and Bindi, Dino and Cotton, Fabrice Pierre}, title = {From Ergodic to Region- and Site-Specific Probabilistic Seismic Hazard Assessment: Method Development and Application at European and Middle Eastern Sites}, series = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, volume = {33}, journal = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, publisher = {Earthquake Engineering Research Institute}, address = {Oakland}, issn = {8755-2930}, doi = {10.1193/081016EQS130M}, pages = {1433 -- 1453}, year = {2017}, abstract = {The increasing numbers of recordings at individual sites allows quantification of empirical linear site-response adjustment factors (delta S2S(s)) from the ground motion prediction equation (GMPE) residuals. The delta S2S(s) are then used to linearly scale the ergodic GMPE predictions to obtain site-specific ground motion predictions in a partially non-ergodic Probabilistic Seismic Hazard Assessment (PSHA). To address key statistical and conceptual issues in the current practice, we introduce a novel empirical region-and site-specific PSHA methodology wherein, (1) site-to-site variability (phi(S2S)) is first estimated as a random-variance in a mixed-effects GMPE regression, (2) delta S2S(s) at new sites with strong motion are estimated using the a priori phi(S2S), and (3) the GMPE site-specific single-site aleatory variability sigma(ss,s) is replaced with a generic site-corrected aleatory variability sigma(0). Comparison of region- and site-specific hazard curves from our method against the traditional ergodic estimates at 225 sites in Europe and Middle East shows an approximate 50\% difference in predicted ground motions over a range of hazard levels-a strong motivation to increase seismological monitoring of critical facilities and enrich regional ground motion data sets.}, language = {en} } @article{GruenthalStromeyerBosseetal.2018, author = {Gr{\"u}nthal, Gottfried and Stromeyer, Dietrich and Bosse, Christian and Cotton, Fabrice Pierre and Bindi, Dino}, title = {The probabilistic seismic hazard assessment of Germany-version 2016, considering the range of epistemic uncertainties and aleatory variability}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {16}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {10}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-018-0315-y}, pages = {4339 -- 4395}, year = {2018}, abstract = {The basic seismic load parameters for the upcoming national design regulation for DIN EN 1998-1/NA result from the reassessment of the seismic hazard supported by the German Institution for Civil Engineering (DIBt). This 2016 version of the national seismic hazard assessment for Germany is based on a comprehensive involvement of all accessible uncertainties in models and parameters and includes the provision of a rational framework for integrating ranges of epistemic uncertainties and aleatory variabilities in a comprehensive and transparent way. The developed seismic hazard model incorporates significant improvements over previous versions. It is based on updated and extended databases, it includes robust methods to evolve sets of models representing epistemic uncertainties, and a selection of the latest generation of ground motion prediction equations. The new earthquake model is presented here, which consists of a logic tree with 4040 end branches and essential innovations employed for a realistic approach. The output specifications were designed according to the user oriented needs as suggested by two review teams supervising the entire project. Seismic load parameters, for rock conditions of nu(S30) = 800 m/s, are calculated for three hazard levels (10, 5 and 2\% probability of occurrence or exceedance within 50 years) and delivered in the form of uniform hazard spectra, within the spectral period range 0.02-3 s, and seismic hazard maps for peak ground acceleration, spectral response accelerations and for macroseismic intensities. Results are supplied as the mean, the median and the 84th percentile. A broad analysis of resulting uncertainties of calculated seismic load parameters is included. The stability of the hazard maps with respect to previous versions and the cross-border comparison is emphasized.}, language = {en} } @misc{GruenthalStromeyerBosseetal.2018, author = {Gr{\"u}nthal, Gottfried and Stromeyer, Dietrich and Bosse, Christian and Cotton, Fabrice Pierre and Bindi, Dino}, title = {Correction to: The probabilistic seismic hazard assessment of Germanyversion 2016, considering the range of epistemic uncertainties and aleatory variability (vol 16, pg 4339, 2018)}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {16}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {10}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-018-0398-5}, pages = {4397 -- 4398}, year = {2018}, abstract = {One paragraph of the manuscript of the paper has been inadvertently omitted in the very final stage of its compilation due to a technical mistake. Since this paragraph discusses the declustering of the used earthquake catalogue and is therefore necessary for the understanding of the seismicity data preprocessing, the authors decided to provide this paragraph in form of a correction. The respective paragraph belongs to chapter 2 of the paper, where it was placed originally, and should be inserted into the published paper before the second to the last paragraph. The omitted text reads as follows:}, language = {en} }