@misc{KoetzReicheltKosmellaetal.2005, author = {Koetz, Joachim and Reichelt, S. and Kosmella, Sabine and Tiersch, Brigitte}, title = {Recovery of nanoparticles produced in phosphatidylcholine-based template phases}, issn = {0021-9797}, year = {2005}, abstract = {This paper focuses on the characterization and use of polymer-modified phosphatidylcholine (PC)/sodium dodecyl sulfate (SDS)-based inverse microemulsions as a template phase for BaSO4 nanoparticle formation. The area of the optically clear inverse microemulsion phase in the isooctane/hexanol/water/PC/SDS system is not significantly changed by adding polyelectrolytes, i.e., poly(diallyldimethylammonium chloride) (PDADMAC), or amphoteric copolymers of diallyldimethylammonium chloride and maleamid acid to the SDS-modified inverse microemulsion. Shear experiments show non- Newtonian flow behavior and oscillation experiments show a frequency-dependent viscosity increase (dilatant behavior) of the microemulsions. Small amounts of bulk water were identified by means of differential scanning calorimetry. One can conclude that the macromolecules are incorporated into the individual droplets, and polymer-filled microemulsions are formed. The polymer-filled microemulsions were used as a template phase for the synthesis of BaSO4 nanoparticles. After solvent evaporation the nanoparticles were redispersed in water and isooctane, respectively. The polymers incorporated into the microemulsion are involved in the redispersion process and influence the size and shape of the redispersed BaSO4 particles in a specific way. The crystallization process mainly depends on the type of solvent and the polymer component added. In the presence of the cationic polyelectrolyte PDADMAC the crystallization to larger cubic crystals is inhibited, and layers consisting of polymer-stabilized spherical nanoparticles of BaSO4 (6 nm in size) will be observed. (c) 2004 Elsevier Inc. All rights reserved}, language = {en} } @misc{LutzKristenSkrabaniaetal.2006, author = {Lutz, Jean-Francois and Kristen, Juliane and Skrabania, Katja and Laschewsky, Andre}, title = {POLY 14-Synthetic strategies for preparing multicompartment micelles}, series = {Abstracts of papers / American Chemical Society}, volume = {232}, journal = {Abstracts of papers / American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, isbn = {0-8412-7426-6}, issn = {0065-7727}, pages = {1}, year = {2006}, abstract = {The fabrication of compartmented micellar systems is an exciting new area of research in the field of polymer self-assembly. Multicompartment micelles composed of a water-soluble shell and a segregated hydrophobic core can be obtained via direct aqueous self-assembly of preformed polymeric amphiphiles possessing one hydrophilic segment and two incompatible hydrophobic segments (e.g. hydrocarbon and fluorocarbon blocks). Such macromolecular building-blocks were prepared in the present work principally via reversible addition-fragmentation transfer polymerization (RAFT). Polysoaps or triblock macrosurfactants can be synthesized in high yields by RAFT under relatively straightforward experimental conditions.}, language = {en} } @misc{Fuechsel2011, author = {F{\"u}chsel, Gernot}, title = {Elektronengetriebene Reaktionen auf Oberfl{\"a}chen : die Dynamik der femtosekundenlaserinduzierten Desorption von H2/D2 von Ru(001)}, address = {Potsdam}, pages = {162 S.}, year = {2011}, language = {de} } @misc{KramerKleinpeter2011, author = {Kramer, Markus and Kleinpeter, Erich}, title = {A conformational study of N-acetyl glucosamine derivatives utilizing residual dipolar couplings (vol 212, pg 174, 2011)}, series = {Journal of magnetic resonance}, volume = {213}, journal = {Journal of magnetic resonance}, number = {1}, publisher = {Elsevier}, address = {San Diego}, issn = {1090-7807}, doi = {10.1016/j.jmr.2011.09.017}, pages = {210 -- 211}, year = {2011}, language = {en} } @misc{TrollKulkarniWangetal.2011, author = {Troll, K. and Kulkarni, Amit and Wang, W. and Darko, C. and Koumba, A. M. Bivigou and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {The collapse transition of poly(styrene-b-(N-isopropyl acrylamide)) diblock copolymers in aqueous solution and in thin films}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {289}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-010-2344-1}, pages = {227 -- 227}, year = {2011}, language = {en} } @misc{Krehl2012, author = {Krehl, Stefan}, title = {Entwicklung von Ruthenium-katalysierten Tandem-Reaktionssequenzen}, address = {Potsdam}, pages = {280 S.}, year = {2012}, language = {de} } @misc{PihlajaKleinpeter2012, author = {Pihlaja, Kalevi and Kleinpeter, Erich}, title = {Professor Ferenc Fulop a tribute}, series = {Arkivoc : free online journal of organic chemistry}, journal = {Arkivoc : free online journal of organic chemistry}, publisher = {ARKAT}, address = {Gainesville}, issn = {1551-7004}, pages = {1 -- 5}, year = {2012}, language = {en} } @misc{BleekTaubert2013, author = {Bleek, Katrin and Taubert, Andreas}, title = {New developments in polymer-controlled, bio-inspired calcium phosphate mineralization from aqueous solution}, series = {Acta biomaterialia}, volume = {9}, journal = {Acta biomaterialia}, number = {9}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2013.05.007}, pages = {8466 -- 8466}, year = {2013}, language = {en} } @misc{Floss2014, author = {Floss, Gereon}, title = {Theoretische Untersuchungen zur lichtinduzierten Isomerisierung von gekoppelten Azobenzolderivaten}, address = {Potsdam}, pages = {130 S.}, year = {2014}, language = {de} } @misc{Boese2014, author = {Boese, Adrian Daniel}, title = {Assessment of coupled cluster theory and more approximate methods for Hydrogen Bonded Systems (vol 9, pg 4403, 2013)}, series = {Journal of chemical theory and computation}, volume = {10}, journal = {Journal of chemical theory and computation}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/ct500041j}, pages = {893 -- 893}, year = {2014}, language = {en} }