@phdthesis{Paraskevopoulou2019, author = {Paraskevopoulou, Sofia}, title = {Adaptive genetic variation and responses to thermal stress in brachionid rotifers}, pages = {IV, 177}, year = {2019}, abstract = {The importance of cryptic diversity in rotifers is well understood regarding its ecological consequences, but there remains an in depth comprehension of the underlying molecular mechanisms and forces driving speciation. Temperature has been found several times to affect species spatio-temporal distribution and organisms' performance, but we lack information on the mechanisms that provide thermal tolerance to rotifers. High cryptic diversity was found recently in the freshwater rotifer "Brachionus calyciflorus", showing that the complex comprises at least four species: B. calyciflorus sensu stricto (s.s.), B. fernandoi, B. dorcas, and B. elevatus. The temporal succession among species which have been observed in sympatry led to the idea that temperature might play a crucial role in species differentiation. The central aim of this study was to unravel differences in thermal tolerance between species of the former B. calyciflorus species complex by comparing phenotypic and gene expression responses. More specifically, I used the critical maximum temperature as a proxy for inter-species differences in heat-tolerance; this was modeled as a bi-dimensional phenotypic trait taking into consideration the intention and the duration of heat stress. Significant differences on heat-tolerance between species were detected, with B. calyciflorus s.s. being able to tolerate higher temperatures than B. fernandoi. Based on evidence of within species neutral genetic variation, I further examined adaptive genetic variability within two different mtDNA lineages of the heat tolerant B. calyciflorus s.s. to identify SNPs and genes under selection that might reflect their adaptive history. These analyses did not reveal adaptive genetic variation related to heat, however, they show putatively adaptive genetic variation which may reflect local adaptation. Functional enrichment of putatively positively selected genes revealed signals of adaptation in genes related to "lipid metabolism", "xenobiotics biodegradation and metabolism" and "sensory system", comprising candidate genes which can be utilized in studies on local adaptation. An absence of genetically-based differences in thermal adaptation between the two mtDNA lineages, together with our knowledge that B. calyciflorus s.s. can withstand a broad range of temperatures, led to the idea to further investigate shared transcriptomic responses to long-term exposure to high and low temperatures regimes. With this, I identified candidate genes that are involved in the response to temperature imposed stress. Lastly, I used comparative transcriptomics to examine responses to imposed heat-stress in heat-tolerant and heat-sensitive Brachionus species. I found considerably different patterns of gene expression in the two species. Most striking are patterns of expression regarding the heat shock proteins (hsps) between the two species. In the heat-tolerant, B. calyciflorus s.s., significant up-regulation of hsps at low temperatures was indicative of a stress response at the cooler end of the temperature regimes tested here. In contrast, in the heat-sensitive B. fernandoi, hsps generally exhibited up-regulation of these genes along with rising temperatures. Overall, identification of differences in expression of genes suggests suppression of protein biosynthesis to be a mechanism to increase thermal tolerance. Observed patterns in population growth are correlated with the hsp gene expression differences, indicating that this physiological stress response is indeed related to phenotypic life history performance.}, language = {en} } @phdthesis{Nowak2020, author = {Nowak, Jacqueline}, title = {Devising computational tools to quantify the actin cytoskeleton and pavement cell shape using network-based approaches}, school = {Universit{\"a}t Potsdam}, pages = {123}, year = {2020}, abstract = {Recent advances in microscopy have led to an improved visualization of different cell processes. Yet, this also leads to a higher demand of tools which can process images in an automated and quantitative fashion. Here, we present two applications that were developed to quantify different processes in eukaryotic cells which rely on the organization and dynamics of the cytoskeleton.. In plant cells, microtubules and actin filaments form the backbone of the cytoskeleton. These structures support cytoplasmic streaming, cell wall organization and tracking of cellular material to and from the plasma membrane. To better understand the underlying mechanisms of cytoskeletal organization, dynamics and coordination, frameworks for the quantification are needed. While this is fairly well established for the microtubules, the actin cytoskeleton has remained difficult to study due to its highly dynamic behaviour. One aim of this thesis was therefore to provide an automated framework to quantify and describe actin organization and dynamics. We used the framework to represent actin structures as networks and examined the transport efficiency in Arabidopsis thaliana hypocotyl cells. Furthermore, we applied the framework to determine the growth mode of cotton fibers and compared the actin organization in wild-type and mutant cells of rice. Finally, we developed a graphical user interface for easy usage. Microtubules and the actin cytoskeleton also play a major role in the morphogenesis of epidermal leaf pavement cells. These cells have highly complex and interdigitated shapes which are hard to describe in a quantitative way. While the relationship between microtubules, the actin cytoskeleton and shape formation is the object of many studies, it is still not clear how and if the cytoskeletal components predefine indentations and protrusions in pavement cell shapes. To understand the underlying cell processes which coordinate cell morphogenesis, a quantitative shape descriptor is needed. Therefore, the second aim of this thesis was the development of a network-based shape descriptor which captures global and local shape features, facilitates shape comparison and can be used to evaluate shape complexity. We demonstrated that our framework can be used to describe and compare shapes from various domains. In addition, we showed that the framework accurately detects local shape features of pavement cells and outperform contending approaches. In the third part of the thesis, we extended the shape description framework to describe pavement cell shape features on tissue-level by proposing different network representations of the underlying imaging data.}, language = {en} } @phdthesis{Lehmann2018, author = {Lehmann, Andreas}, title = {Variability in human life history traits}, school = {Universit{\"a}t Potsdam}, pages = {110}, year = {2018}, language = {de} }