@article{WoehlBruhnBadarBertzetal.2012, author = {W{\"o}hl-Bruhn, Stefanie and Badar, Muhammad and Bertz, Andreas and Tiersch, Brigitte and Koetz, Joachim and Menzel, Henning and M{\"u}ller, Peter P. and Bunjes, Heike}, title = {Comparison of in vitro and in vivo protein release from hydrogel systems}, series = {Journal of controlled release}, volume = {162}, journal = {Journal of controlled release}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2012.05.049}, pages = {127 -- 133}, year = {2012}, abstract = {Hydrogel systems based on hydroxyethyl starch-polyethylene glycol methacrylate (HES-P(EG)(6)MA) or hydroxyethyl starch methacrylate (HES-MA) were used to assess the protein release behavior. Here, we analyzed the in vitro release of FITC-anti-human antibodies incorporated in either HES-P(EG)(6)MA or HES-MA hydrogel delivery systems in PBS or human serum. In addition, hydrogel disks and microparticles prepared from the two polymers were subcutaneously implanted in BALB/c mice. The in vivo release of FITC-IgG was non-invasively monitored by an in vivo imaging system (IVIS 200) over a time period of up to 3 months. The imaging system allowed to asses individual animals over time, therefore only a small number of animals was required to obtain high quality data. The reduction in fluorescence intensity at the site of administration was compared to in vitro release profiles. These investigations demonstrated a sustained release from HES-MA hydrogel disks compared to rapidly degrading HES-P(EG)(6)MA disks and microparticles. The sustained release from HES-MA disks could be further optimized by using increased polymer concentrations. Human serum as in vitro release medium reflected better the in vivo release from HES-P(EG)(6)MA systems than PBS, suggesting that the presence of organic substances like proteins or lipids may play a significant role for the release kinetics.}, language = {en} } @article{WellertTierschKoetzetal.2011, author = {Wellert, Stefan and Tiersch, Brigitte and Koetz, Joachim and Richardt, Andre and Lapp, Alain and Holderer, Olaf and Gaeb, Juergen and Blum, Marc-Michael and Schulreich, Christoph and Stehle, Ralf and Hellweg, Thomas}, title = {The DFPase from Loligo vulgaris in sugar surfactant-based bicontinuous microemulsions structure, dynamics, and enzyme activity}, series = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, volume = {40}, journal = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0175-7571}, doi = {10.1007/s00249-011-0689-0}, pages = {761 -- 774}, year = {2011}, abstract = {The enzyme diisopropyl fluorophosphatase (DFPase) from the squid Loligo vulgaris is of great interest because of its ability to catalyze the hydrolysis of highly toxic organophosphates. In this work, the enzyme structure in solution (native state) was studied by use of different scattering methods. The results are compared with those from hydrodynamic model calculations based on the DFPase crystal structure. Bicontinuous microemulsions made of sugar surfactants are discussed as host systems for the DFPase. The microemulsion remains stable in the presence of the enzyme, which is shown by means of scattering experiments. Moreover, activity assays reveal that the DFPase still has high activity in this complex reaction medium. To complement the scattering experiments cryo-SEM was also employed to study the microemulsion structure.}, language = {en} } @article{WegenerWirgesTiersch2006, author = {Wegener, Michael and Wirges, Werner and Tiersch, Brigitte}, title = {Porous polytetrafluoroethylene (PTFE) electret films : porosity and time dependent charging behaviour of the free surface}, doi = {10.1007/s10934-006-9015-0}, year = {2006}, abstract = {Electrically charged porous polytetrafluoroethylene (PTFE) films are often discussed as active layers for electromechanical transducers. Here, the electric charging behavior of open-porous PTFE films with different porosities is investigated. Optimized electric charging of porous PTFE films is determined by variation of charging parameters such as electric fields and charging times. Maximum surface potentials are depending on the porosity of the PTFE films. Suitable charging leads to high surface potentials observed on non-stretched or slightly stretched porous PTFE films. Further increase of charging fields yields decreasing values of the surface potential accompanied with an increase of conductivity.}, language = {en} } @article{WegenerWirgesFohlmeisteretal.2004, author = {Wegener, Michael and Wirges, Werner and Fohlmeister, Jens Bernd and Tiersch, Brigitte and Gerhard, Reimund}, title = {Two-step inflation of cellular polypropylene films: Void-thickness increase and enhanced electromechanical properties}, year = {2004}, abstract = {In cellular, electromechanically active polymer films, the so-called ferroelectrets, the cell size and shape distributions can be varied through a controlled inflation process. Up to now, high-pressure treatments were usually performed at elevated temperatures. There are, however, significant experimental limitations and complications if the pressure and temperature treatments are performed at the same time. Here, we demonstrate the controlled inflation of cellular polypropylene films by means of sepal-ate pressure and temperature treatments. Separate procedures are Much easier to implement. Excellent electromechanical properties were achieved with Such a two-step inflation process. The technique has significant potential for inflating large-area transducer films for electromechanical and electroacoustical applications}, language = {en} } @article{WeberTierschUnterlassetal.2011, author = {Weber, Nancy and Tiersch, Brigitte and Unterlass, Miriam M. and Heilig, Anneliese and Tauer, Klaus}, title = {"Schizomorphic" Emulsion Copolymerization Particles}, series = {Macromolecular rapid communications}, volume = {32}, journal = {Macromolecular rapid communications}, number = {23}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1022-1336}, doi = {10.1002/marc.201100491}, pages = {1925 -- 1929}, year = {2011}, abstract = {Cryo-electron microscopy, atomic force microscopy, and light microscopy investigations provide experimental evidence that amphiphilic emulsion copolymerization particles change their morphology in dependence on concentration. The shape of the particles is spherical at solids content above 1\%, but it changes to rod-like, ring-like, and web-like structures at lower concentrations. In addition, the shape and morphology of these particles at low concentrations are not fixed but very flexible and vary with time between spheres, flexible pearlnecklace structures, and stretched rods.}, language = {en} } @article{VargasRuizSchulreichKostevicetal.2016, author = {Vargas-Ruiz, Salome and Schulreich, Christoph and Kostevic, Angelika and Tiersch, Brigitte and Koetz, Joachim and Kakorin, Sergej and von Klitzing, Regine and Jung, Martin and Hellweg, Thomas and Wellert, Stefan}, title = {Extraction of model contaminants from solid surfaces by environmentally compatible microemulsions}, series = {Journal of colloid and interface science}, volume = {471}, journal = {Journal of colloid and interface science}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9797}, doi = {10.1016/j.jcis.2016.03.006}, pages = {118 -- 126}, year = {2016}, abstract = {In the present contribution, we evaluate the efficiency of eco-friendly microemulsions to decontaminate solid surfaces by monitoring the extraction of non-toxic simulants of sulfur mustard out of model surfaces. The extraction process of the non-toxic simulants has been monitored by means of spectroscopic and chromatographic techniques. The kinetics of the removal process was analyzed by different empirical models. Based on the analysis of the kinetics, we can assess the influence of the amounts of oil and water and the microemulsion structure on the extraction process. (C) 2016 Elsevier Inc. All rights reserved.}, language = {en} } @article{TierschKoetzHartmann1997, author = {Tiersch, Brigitte and Koetz, Joachim and Hartmann, J{\"u}rgen}, title = {Structural Analysis of the influence of polymers on lyotropic liquid-crystal systems}, year = {1997}, language = {en} } @article{SeckerVoelkelTierschetal.2016, author = {Secker, Christian and Voelkel, Antje and Tiersch, Brigitte and Koetz, Joachim and Schlaad, Helmut}, title = {Thermo-Induced Aggregation and Crystallization of Block Copolypeptoids in Water}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {49}, journal = {Macromolecules : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.5b02481}, pages = {979 -- 985}, year = {2016}, abstract = {Block copolypeptoids comprising a thermosensitive, crystallizable poly(N-(n-propyl)glycine) block and a watersoluble poly(N-methylglycine) block, P70My (y = 23, 42, 76, 153, and 290), were synthesized bY ring-opening polymerization of the corresponding N-alkylglycine N-carboxyanhydrides (NCAs) and examined according to their thermo-induced aggregation and crystallization in water by turbidimetty, micro-differential scanning calorimetry (micro-DSC); cryogenic scanning electron microscopy (cryo-SEM), analytical ultracentrifugation (AUC), and static light scattering (SLS). At a temperature above the cloud point temperature, the initially formed micellar aggregates started to crystallize and grow into larger complex assemblies of about 100-500 nm, exhibiting flower-like (P70M23), ellipsoidal (P70M42 and P70M72) or irregular shapes (P70M153 and.P70M290).}, language = {en} } @article{SchulzeAppelhansTierschetal.2014, author = {Schulze, Nicole and Appelhans, D. and Tiersch, Brigitte and Koetz, Joachim}, title = {Morphological transformation of vesicles into tubular structures by adding polyampholytes or dendritic glycopolymers}, series = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, volume = {457}, journal = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2014.06.007}, pages = {326 -- 332}, year = {2014}, abstract = {For the first time tubulating properties of spherical dendritic glycopolymers and linear alternating polyampholytes against non-uniform negatively charged giant vesicles are proven by light microscopy and cryo-scanning electron microscopy study. Real time observation of the morphological transformation from giant vesicles to tubular structures, simulating morphogenesis in living cells, is given by using the cationic and H-bond active dendritic glycopolymer accompanied by reducing the size of the giant vesicles and the evidence of vesicle-vesicle interaction which was only postulated in a previous study. Similar morphogenesis of non-uniform giant vesicles into tubular network structure can be observed by using a polyampholyte in the stretched conformation at pH 9. Pearl necklace and tubular network structure formation are also observed by applying anionic vesicles of significant smaller dimensions with average size dimensions of 35 nm, after adding the polyampholyte at pH 9. However, the fitting accuracy between the functional groups along the backbone chain of the polyampholyte on one side and the vesicle surface on the other side is of high importance for the transformation process by using polyampholytes. The resulting tubular and network structures offer new fields of application as microfluidic transport channels or template phases for the shape controlled formation of nanoparticles. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{RusuNgWilkeetal.2005, author = {Rusu, Viorel Marin and Ng, C. H. and Wilke, Max and Tiersch, Brigitte and Fratzl, Peter and Peter, Martin G.}, title = {Size-controlled hydroxyapatite nanoparticles as self-organized organic-in organic composite materials}, issn = {0142-9612}, year = {2005}, abstract = {This paper presents some results concerning the size-controlled hydroxyapatite nanoparticles obtained in aqueous media in a biopolymer matrix from soluble precursors salts. Taking the inspiration from nature, where composite materials made of a polymer matrix and inorganic fillers are often found, e.g. bone, shell of crustaceans, shell of eggs, etc., the feasibility on making composite materials containing chitosan and nanosized hydroxyapatite was investigated. A stepwise co-precipitation approach was used to obtain different types of composites by means of different ratio between components. The synthesis of hydroxyapatite was carried out in the chitosan matrix from calcium chloride and sodium dihydrogenphosphate in alkaline solutions at moderate pH of 10-11 for 24 h. Our research is focused on studying and understanding the structure of this class of composites, aiming at the development of novel materials, controlled at the nanolevel scale. The X-ray diffraction technique was employed in order to study the kinetic of hydroxyapatite formation in the chitosan matrix as well as to determine the HAp crystallite sizes in the composite samples. The hydroxyapatite synthesized using this route was found to be nano-sized (15-50nm). Moreover, applying an original approach to analyze the (002) XRD diffraction peak profile of hydroxyapatite by using a sum of two Gauss functions, the bimodal distribution of nanosized hydroxyapatite within the chitosan matrix was revealed. Two types of size distribution domains such as cluster-like (between 200 and 400 nm), which are the habitat of "small" hydroxyapatite nanocrystallites and scattered-like, which are the habitat of "large" hydroxyapatite nanocrystallites was probed by TEM and CSLM. The structural features of composites suggest that self-assembly processes might be involved. The composites contain nanosized hydroxyapatite with structural features close to those of biological apatites that make them attractive for bone tissue engineering applications. (c) 2005 Elsevier Ltd. All rights reserved}, language = {en} }