@phdthesis{Zimmermann2017, author = {Zimmermann, Heike Hildegard}, title = {Vegetation changes and treeline dynamics in northern Siberia since the last interglacial revealed by sedimentary ancient DNA metabarcoding and organelle genome assembly of modern larches}, school = {Universit{\"a}t Potsdam}, pages = {138}, year = {2017}, language = {en} } @phdthesis{Zeng2017, author = {Zeng, Ting}, title = {Nanoparticles promoted biocatalysis}, school = {Universit{\"a}t Potsdam}, pages = {99}, year = {2017}, language = {en} } @phdthesis{Yang2017, author = {Yang, Lei}, title = {Verification of systemic mRNAs mobility and mobile functions}, school = {Universit{\"a}t Potsdam}, pages = {125}, year = {2017}, language = {en} } @phdthesis{Wu2017, author = {Wu, Si}, title = {Exploring the Arabidopsis metabolic landscape by genetic mapping integrated with network analysis}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2017}, language = {en} } @phdthesis{Weiss2017, author = {Weiß, Lina}, title = {Understanding the emergence and maintenance of biodiversity in grasslands}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2017}, language = {en} } @phdthesis{UlbrichtJones2017, author = {Ulbricht-Jones, Elena Sofia}, title = {The virescent and narrow leaf phenotype of a plastome-genome-incompatible Oenothera hybrid is associated with the plastid gene accD and fatty acid synthesis}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2017}, language = {en} } @phdthesis{Tabatabaei2017, author = {Tabatabaei, Iman}, title = {Development of new selection systems for organellar genome transformation}, school = {Universit{\"a}t Potsdam}, pages = {II, 152}, year = {2017}, abstract = {Plant cells host two important organelles: mitochondria, known as the cell's 'powerhouse', which act by converting oxygen and nutrients into ATP, and plastids, which perform photosynthesis. These organelles contain their own genomes that encode proteins required for gene expression and energy metabolism. Transformation technologies offer great potential for investigating all aspects of the physiology and gene expression of these organelles in vivo. In addition, organelle transformation can be a valuable tool for biotechnology and molecular plant breeding. Plastid transformation systems are well-developed for a few higher plants, however, mitochondrial transformation has so far only been reported for Saccharomyces cerevisiae and the unicellular alga Chlamydomonas reinhardtii. Development of an efficient new selection marker for plastid transformation is important for several reasons, including facilitating supertransformation of the plastid genome for metabolic engineering purposes and for producing multiple knock-outs or site-directed mutagenesis of two unlinked genes. In this work, we developed a novel selection system for Nicotiana tabacum (tobacco) chloroplast transformation with an alternative marker. The marker gene, aac(6′)-Ie/aph(2′′)-Ia, was cloned into different plastid transformation vectors and several candidate aminoglycoside antibiotics were investigated as selection agents. Generally, the efficiency of selection and the transformation efficiency with aac(6′)-Ie/aph(2′′)-Ia as selectable marker in combination with the aminoglycoside antibiotic tobramycin was similarly high as that with the standard marker gene aadA and spectinomycin selection. Furthermore, our new selection system may be useful for the development of plastid transformation for new species, including cereals, the world's most important food crops, and could also be helpful for the establishment of a selection system for mitochondrial transformation. To date, all attempts to achieve mitochondrial transformation for higher plants have been unsuccessful. A mitochondrial transformation system for higher plants would not only provide a potential for studying mitochondrial physiology but could also provide a method to introduce cytoplasmic male sterility into crops to produce hybrid seeds. Establishing a stable mitochondrial transformation system in higher plants requires several steps including delivery of foreign DNA, stable integration of the foreign sequences into the mitochondrial genome, efficient expression of the transgene, a highly regenerable tissue culture system that allows regeneration of the transformed cells into plants, and finally, a suitable selection system to identify cells with transformed mitochondrial genomes. Among all these requirements, finding a good selection is perhaps the most important obstacle towards the development of a mitochondrial transformation system for higher plants. In this work, two selection systems were tested for mitochondrial transformation: kanamycin as a selection system in combination with the antibiotic-inactivating marker gene nptII, and sulfadiazine as a selection agent that inhibits the folic acid biosynthesis pathway residing in plant mitochondria in combination with the sul gene encoding an enzyme that is insensitive to inhibition by sulfadiazine. Nuclear transformation experiments were considered as proof of the specificity of the sulfadiazine selection system for mitochondria. We showed that an optimized sulfadiazine selection system, with the Sul protein targeted to mitochondria, is much more efficient than the previous sulfadiazine selection system, in which the Sul protein was targeted to the chloroplast. We also showed by systematic experiments that the efficiency of selection and nuclear transformation of the optimized sulfadiazine selection was higher compared to the standard kanamycin selection system. Finally, we also investigated the suitability of this selection system for nuclear transformation of the model alga Chlamydomonas reinhardtii, obtaining promising results. Although we designed several mitochondrial transformation vectors with different expression elements and integration sites in the mitochondrial genome based on the sulfadiazine system, and different tissue culture condition were also considered, we were not able to obtain mitochondrial transformation with this system. Nonetheless, establishing the sul gene as an efficient and specific selection marker for mitochondria addresses one of the major bottlenecks and may pave the way to achieve mitochondrial transformation in higher plants.}, language = {en} } @phdthesis{Swart2017, author = {Swart, Corn{\´e}}, title = {Managing protein activity in A. thaliana}, school = {Universit{\"a}t Potsdam}, pages = {160}, year = {2017}, language = {en} } @phdthesis{Suchoszek2017, author = {Suchoszek, Monika}, title = {Characterization of inducible galactolipid biosynthesis mutants in tobacco}, school = {Universit{\"a}t Potsdam}, pages = {116}, year = {2017}, abstract = {Chloroplast membranes have a unique composition characterized by very high contents of the galactolipids, MGDG and DGDG. Many studies on constitutive, galactolipid-deficient mutants revealed conflicting results about potential functions of galactolipids in photosynthetic membranes. Likely, this was caused by pleiotropic effects such as starvation artefacts because of impaired photosynthesis from early developmental stages of the plants onward. Therefore, an ethanol inducible RNAi-approach has been taken to suppress two key enzymes of galactolipid biosynthesis in the chloroplast, MGD1 and DGD1. Plants were allowed to develop fully functional source leaves prior to induction, which then could support plant growth. Then, after the ethanol induction, both young and mature leaves were investigated over time. Our studies revealed similar changes in both MGDG- and DGDG-deficient lines, however young and mature leaves of transgenic lines showed a different response to galactolipid deficiency. While no changes of photosynthetic parameters and minor changes in lipid content were observed in mature leaves of transgenic lines, strong reductions in total chlorophyll content and in the accumulation of all photosynthetic complexes and significant changes in contents of various lipid groups occurred in young leaves. Microscopy studies revealed an appearance of lipid droplets in the cytosol of young leaves in all transgenic lines which correlates with significantly higher levels of TAGs. Since in young leaves the production of membrane lipids is lowered, the excess of fatty acids is used for storage lipids production, resulting in the accumulation of TAGs. Our data indicate that both investigated galactolipids serve as structural lipids since changes in photosynthetic parameters were mainly the result of reduced amounts of all photosynthetic constituents. In response to restricted galactolipid synthesis, thylakoid biogenesis is precisely readjusted to keep the proper stoichiometry and functionality of the photosynthetic apparatus. Ultimately, the data revealed that downregulation of one galactolipid triggers changes not only in chloroplasts but also in the nucleus as shown by downregulation of nuclear encoded subunits of the photosynthetic complexes.}, language = {en} } @phdthesis{Sedaghatmehr2017, author = {Sedaghatmehr, Mastoureh}, title = {Unraveling the regulatory mechanisms of heat stress memory in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {176}, year = {2017}, language = {en} }