@article{RocchettiSharmaWulfetangeetal.2012, author = {Rocchetti, Alessandra and Sharma, Tripti and Wulfetange, Camilla and Scholz-Starke, Joachim and Grippa, Alexandra and Carpaneto, Armando and Dreyer, Ingo and Vitale, Alessandro and Czempinski, Katrin and Pedrazzini, Emanuela}, title = {The putative K+ channel subunit AtKCO3 forms stable dimers in arabidopsis}, series = {Frontiers in plant science}, volume = {3}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2012.00251}, pages = {13}, year = {2012}, abstract = {The permeation pore of K+ channels is formed by four copies of the pore domain. AtKCO3 is the only putative voltage-independent K+ channel subunit of Arabidopsis thaliana with a single pore domain. KCO3-like proteins recently emerged in evolution and, to date, have been found only in the genus Arabidopsis (A. thaliana and A. lyrata). We show that the absence of KCO3 does not cause marked changes in growth under various conditions. Only under osmotic stress we observed reduced root growth of the kco3-1 null-allele line. This phenotype was complemented by expressing a KCO3 mutant with an inactive pore, indicating that the function of KCO3 under osmotic stress does not depend on its direct ability to transport ions. Constitutively overexpressed AtKCO3 or AtKCO3::G FP are efficiently sorted to the tonoplast indicating that the protein is approved by the endoplasmic reticulum quality control. However, vacuoles isolated from transgenic plants do not have significant alterations in current density. Consistently, both AtKCO3 and AtKCO3::GFP are detected as homodimers upon velocity gradient centrifugation, an assembly state that would not allow for activity. We conclude that if AtKCO3 ever functions as a K+ channel, active tetramers are held by particularly weak interactions, are formed only in unknown specific conditions and may require partner proteins.}, language = {en} } @article{SakurabaBalazadehTanakaetal.2012, author = {Sakuraba, Yasuhito and Balazadeh, Salma and Tanaka, Ryouichi and M{\"u}ller-R{\"o}ber, Bernd and Tanaka, Ayumi}, title = {Overproduction of Chl b retards senescence through transcriptional reprogramming in arabidopsis}, series = {Plant \& cell physiology}, volume = {53}, journal = {Plant \& cell physiology}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0032-0781}, doi = {10.1093/pcp/pcs006}, pages = {505 -- 517}, year = {2012}, abstract = {Leaf senescence is a developmentally and environmentally regulated process which includes global changes in gene expression. Using Arabidopsis as a model, we modified Chl arrangement in photosystems by overexpressing the catalytic domain (the C domain) of chlorophyllide a oxygenase (CAO) fused with the linker domain (the B domain) of CAO and green fluorescent protein (GFP). In these plants (referred to as the BCG plants for the B and C domains of CAO and GFP), the Chl a/b ratio was drastically decreased and Chl b was incorporated into core antenna complexes. The BCG plants exhibited a significant delay of both developmental and dark-induced leaf senescence. The photosynthetic apparatus, CO2 fixation enzymes and the chloroplast structure were lost in wild-type plants during senescence, while BCG plants retained them longer than the wild type. Large-scale quantitative real-time PCR analyses of 1,880 transcription factor (TF) genes showed that 241 TFs are differentially expressed between BCG plants and wild-type plants at senescence, similar to 40\% of which are known senescence-associated genes (SAGs). Expression profiling also revealed the down-regulation of a large number of additional non-TF SAGs. In contrast, genes involved in photosynthesis were up-regulated, while those encoding Chl degradation enzymes were down-regulated in BCG plants. These results demonstrate that alteration of pigment composition in the photosynthetic apparatus retards senescence through transcriptional reprogramming.}, language = {en} }