@article{StubningDenesGerhard2021, author = {Stubning, Tobias and Denes, Istvan and Gerhard, Reimund}, title = {Tuning electro-mechanical properties of EAP-based haptic actuators by adjusting layer thickness and number of stacked layers}, series = {Engineering research express}, volume = {3}, journal = {Engineering research express}, number = {1}, publisher = {Institute of Physics}, address = {London}, issn = {2631-8695}, doi = {10.1088/2631-8695/abd286}, pages = {13}, year = {2021}, abstract = {In our fast-changing world, human-machine interfaces (HMIs) are of ever-increasing importance. Among the most ubiquitous examples are touchscreens that most people are familiar with from their smartphones. The quality of such an HMI can be improved by adding haptic feedback-an imitation of using mechanical buttons-to the touchscreen. Thin-film actuators on the basis of electro-mechanically active polymers (EAPs), with the electroactive material sandwiched between two compliant electrodes, offer a promising technology for haptic surfaces. In thin-film technology, the thickness and the number of stacked layers of the electroactive dielectric are key parameters for tuning a system. Therefore, we have experimentally investigated the influence of the thickness of a single EAP layer on the electrical and the electro-mechanical performance of the transducer. In order to achieve high electro-mechanical actuator outputs, we have employed relaxor-ferroelectric ter-fluoropolymers that can be screen-printed. By means of a model-based approach, we have also directly compared single- and multi-layer actuators, thus providing guidelines for optimized transducer configurations with respect to the system requirements of haptic applications for which the operation frequency is of particular importance.}, language = {en} } @article{RolphOverduinRavensetal.2022, author = {Rolph, Rebecca and Overduin, Pier Paul and Ravens, Thomas and Lantuit, Hugues and Langer, Moritz}, title = {ArcticBeach v1.0}, series = {Frontiers in Earth Science}, volume = {10}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2022.962208}, pages = {19}, year = {2022}, abstract = {In the Arctic, air temperatures are increasing and sea ice is declining, resulting in larger waves and a longer open water season, all of which intensify the thaw and erosion of ice-rich coasts. Climate change has been shown to increase the rate of Arctic coastal erosion, causing problems for Arctic cultural heritage, existing industrial, military, and civil infrastructure, as well as changes in nearshore biogeochemistry. Numerical models that reproduce historical and project future Arctic erosion rates are necessary to understand how further climate change will affect these problems, and no such model yet exists to simulate the physics of erosion on a pan-Arctic scale. We have coupled a bathystrophic storm surge model to a simplified physical erosion model of a permafrost coastline. This Arctic erosion model, called ArcticBeach v1.0, is a first step toward a physical parameterization of Arctic shoreline erosion for larger-scale models. It is forced by wind speed and direction, wave period and height, sea surface temperature, all of which are masked during times of sea ice cover near the coastline. Model tuning requires observed historical retreat rates (at least one value), as well as rough nearshore bathymetry. These parameters are already available on a pan-Arctic scale. The model is validated at three study sites at 1) Drew Point (DP), Alaska, 2) Mamontovy Khayata (MK), Siberia, and 3) Veslebogen Cliffs, Svalbard. Simulated cumulative retreat rates for DP and MK respectively (169 and 170 m) over the time periods studied at each site (2007-2016, and 1995-2018) are found to the same order of magnitude as observed cumulative retreat (172 and 120 m). The rocky Veslebogen cliffs have small observed cumulative retreat rates (0.05 m over 2014-2016), and our model was also able to reproduce this same order of magnitude of retreat (0.08 m). Given the large differences in geomorphology between the study sites, this study provides a proof-of-concept that ArcticBeach v1.0 can be applied on very different permafrost coastlines. ArcticBeach v1.0 provides a promising starting point to project retreat of Arctic shorelines, or to evaluate historical retreat in places that have had few observations.}, language = {en} } @article{AyzelHeistermann2021, author = {Ayzel, Georgy and Heistermann, Maik}, title = {The effect of calibration data length on the performance of a conceptual hydrological model versus LSTM and GRU}, series = {Computers \& geosciences : an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets ; an official journal of the International Association for Mathematical Geology}, volume = {149}, journal = {Computers \& geosciences : an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets ; an official journal of the International Association for Mathematical Geology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0098-3004}, doi = {10.1016/j.cageo.2021.104708}, pages = {12}, year = {2021}, abstract = {We systematically explore the effect of calibration data length on the performance of a conceptual hydrological model, GR4H, in comparison to two Artificial Neural Network (ANN) architectures: Long Short-Term Memory Networks (LSTM) and Gated Recurrent Units (GRU), which have just recently been introduced to the field of hydrology. We implemented a case study for six river basins across the contiguous United States, with 25 years of meteorological and discharge data. Nine years were reserved for independent validation; two years were used as a warm-up period, one year for each of the calibration and validation periods, respectively; from the remaining 14 years, we sampled increasing amounts of data for model calibration, and found pronounced differences in model performance. While GR4H required less data to converge, LSTM and GRU caught up at a remarkable rate, considering their number of parameters. Also, LSTM and GRU exhibited the higher calibration instability in comparison to GR4H. These findings confirm the potential of modern deep-learning architectures in rainfall runoff modelling, but also highlight the noticeable differences between them in regard to the effect of calibration data length.}, language = {en} } @article{KocNathoThieken2021, author = {Ko{\c{c}}, Gamze and Natho, Stephanie and Thieken, Annegret}, title = {Estimating direct economic impacts of severe flood events in Turkey (2015-2020)}, series = {International journal of disaster risk reduction : IJDRR}, volume = {58}, journal = {International journal of disaster risk reduction : IJDRR}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-4209}, doi = {10.1016/j.ijdrr.2021.102222}, pages = {16}, year = {2021}, abstract = {Over the past decades, floods have caused significant financial losses in Turkey, amounting to US\$ 800 million between 1960 and 2014. With the Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR), it is aimed to reduce the direct economic loss from disasters in relation to the global gross domestic product (GDP) by 2030. Accordingly, a methodology based on experiences from developing countries was proposed by the United Nations Office for Disaster Risk Reduction (UNDRR) to estimate direct economic losses on the macro-scale. Since Turkey also signed the SFDRR, we aimed to adapt, validate and apply the loss estimation model proposed by the UNDRR in Turkey for the first time. To do so, the well-documented flood event in Mersin of 2016 was used to calibrate the damage ratios for the agricultural, commercial and residential sectors, as well as educational facilities. Case studies between 2015 and 2020 with documented losses were further used to validate the model. Finally, model applications provided initial loss estimates for floods occurred recently in Turkey. Despite the limited event documentation for each sector, the calibrated model yielded good results when compared to documented losses. Thus, by implementing the UNDRR method, this study provides an approach to estimate the direct economic losses in Turkey on the macro-scale, which can be used to fill gaps in event databases, support the coordination of financial aid after flood events and facilitate monitoring of the progress toward and achievement of Global Target C of the Sendai Framework for Disaster Risk Reduction 2015-2030.}, language = {en} } @article{MarschallSkorovZakharovetal.2020, author = {Marschall, Raphael and Skorov, Yuri and Zakharov, Vladimir and Rezac, Ladislav and Gerig, Selina-Barbara and Christou, Chariton and Dadzie, S. Kokou and Migliorini, Alessandra and Rinaldi, Giovanna and Agarwal, Jessica and Vincent, Jean-Baptiste and Kappel, David}, title = {Cometary comae-surface links the physics of gas and dust from the surface to a spacecraft}, series = {Space science reviews}, volume = {216}, journal = {Space science reviews}, number = {8}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-020-00744-0}, pages = {53}, year = {2020}, abstract = {A comet is a highly dynamic object, undergoing a permanent state of change. These changes have to be carefully classified and considered according to their intrinsic temporal and spatial scales. The Rosetta mission has, through its contiguous in-situ and remote sensing coverage of comet 67P/Churyumov-Gerasimenko (hereafter 67P) over the time span of August 2014 to September 2016, monitored the emergence, culmination, and winding down of the gas and dust comae. This provided an unprecedented data set and has spurred a large effort to connect in-situ and remote sensing measurements to the surface. In this review, we address our current understanding of cometary activity and the challenges involved when linking comae data to the surface. We give the current state of research by describing what we know about the physical processes involved from the surface to a few tens of kilometres above it with respect to the gas and dust emission from cometary nuclei. Further, we describe how complex multidimensional cometary gas and dust models have developed from the Halley encounter of 1986 to today. This includes the study of inhomogeneous outgassing and determination of the gas and dust production rates. Additionally, the different approaches used and results obtained to link coma data to the surface will be discussed. We discuss forward and inversion models and we describe the limitations of the respective approaches. The current literature suggests that there does not seem to be a single uniform process behind cometary activity. Rather, activity seems to be the consequence of a variety of erosion processes, including the sublimation of both water ice and more volatile material, but possibly also more exotic processes such as fracture and cliff erosion under thermal and mechanical stress, sub-surface heat storage, and a complex interplay of these processes. Seasons and the nucleus shape are key factors for the distribution and temporal evolution of activity and imply that the heliocentric evolution of activity can be highly individual for every comet, and generalisations can be misleading.}, language = {en} } @article{KloseChaparroSchillingetal.2020, author = {Klose, Tim and Chaparro, M. Carme and Schilling, Frank and Butscher, Christoph and Klumbach, Steffen and Blum, Philipp}, title = {Fluid flow simulations of a large-scale borehole leakage experiment}, series = {Transport in Porous Media}, volume = {136}, journal = {Transport in Porous Media}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0169-3913}, doi = {10.1007/s11242-020-01504-y}, pages = {125 -- 145}, year = {2020}, abstract = {Borehole leakage is a common and complex issue. Understanding the fluid flow characteristics of a cemented area inside a borehole is crucial to monitor and quantify the wellbore integrity as well as to find solutions to minimise existing leakages. In order to improve our understanding of the flow behaviour of cemented boreholes, we investigated experimental data of a large-scale borehole leakage tests by means of numerical modelling using three different conceptual models. The experiment was performed with an autoclave system consisting of two vessels bridged by a cement-filled casing. After a partial bleed-off at the well-head, a sustained casing pressure was observed due to fluid flow through the cementsteel composite. The aim of our simulations is to investigate and quantify the permeability of the cement-steel composite. From our model results, we conclude that the flow occurred along a preferential flow path at the cement-steel interface. Thus, the inner part of the cement core was impermeable during the duration of the experiment. The preferential flow path can be described as a highly permeable and highly porous area with an aperture of about 5 mu m and a permeability of 3 . 10(-12) m(2) (3 Darcy). It follows that the fluid flow characteristics of a cemented area inside a borehole cannot be described using one permeability value for the entire cement-steel composite. Furthermore, it can be concluded that the quality of the cement and the filling process regarding the cement-steel interface is crucial to minimize possible well leakages.}, language = {en} } @article{RodriguezPicedaScheckWenderothGomezDacaletal.2020, author = {Rodriguez Piceda, Constanza and Scheck Wenderoth, Magdalena and Gomez Dacal, Maria Laura and Bott, Judith and Prezzi, Claudia Beatriz and Strecker, Manfred}, title = {Lithospheric density structure of the southern Central Andes constrained by 3D data-integrative gravity modelling}, series = {International journal of earth sciences}, volume = {110}, journal = {International journal of earth sciences}, number = {7}, publisher = {Springer}, address = {New York}, issn = {1437-3254}, doi = {10.1007/s00531-020-01962-1}, pages = {2333 -- 2359}, year = {2020}, abstract = {The southern Central Andes (SCA) (between 27 degrees S and 40 degrees S) is bordered to the west by the convergent margin between the continental South American Plate and the oceanic Nazca Plate. The subduction angle along this margin is variable, as is the deformation of the upper plate. Between 33 degrees S and 35 degrees S, the subduction angle of the Nazca plate increases from sub-horizontal (< 5 degrees) in the north to relatively steep (similar to 30 degrees) in the south. The SCA contain inherited lithological and structural heterogeneities within the crust that have been reactivated and overprinted since the onset of subduction and associated Cenozoic deformation within the Andean orogen. The distribution of the deformation within the SCA has often been attributed to the variations in the subduction angle and the reactivation of these inherited heterogeneities. However, the possible influence that the thickness and composition of the continental crust have had on both short-term and long-term deformation of the SCA is yet to be thoroughly investigated. For our investigations, we have derived density distributions and thicknesses for various layers that make up the lithosphere and evaluated their relationships with tectonic events that occurred over the history of the Andean orogeny and, in particular, investigated the short- and long-term nature of the present-day deformation processes. We established a 3D model of lithosphere beneath the orogen and its foreland (29 degrees S-39 degrees S) that is consistent with currently available geological and geophysical data, including the gravity data. The modelled crustal configuration and density distribution reveal spatial relationships with different tectonic domains: the crystalline crust in the orogen (the magmatic arc and the main orogenic wedge) is thicker (similar to 55 km) and less dense (similar to 2900 kg/m(3)) than in the forearc (similar to 35 km, similar to 2975 kg/m(3)) and foreland (similar to 30 km, similar to 3000 kg/m(3)). Crustal thickening in the orogen probably occurred as a result of stacking of low-density domains, while density and thickness variations beneath the forearc and foreland most likely reflect differences in the tectonic evolution of each area following crustal accretion. No clear spatial relationship exists between the density distribution within the lithosphere and previously proposed boundaries of crustal terranes accreted during the early Paleozoic. Areas with ongoing deformation show a spatial correlation with those areas that have the highest topographic gradients and where there are abrupt changes in the average crustal-density contrast. This suggests that the short-term deformation within the interior of the Andean orogen and its foreland is fundamentally influenced by the crustal composition and the relative thickness of different crustal layers. A thicker, denser, and potentially stronger lithosphere beneath the northern part of the SCA foreland is interpreted to have favoured a strong coupling between the Nazca and South American plates, facilitating the development of a sub-horizontal slab.}, language = {en} } @article{MarkowskaFohlmeisterTrebleetal.2019, author = {Markowska, Monika and Fohlmeister, Jens Bernd and Treble, Pauline C. and Baker, Andy and Andersen, Martin S. and Hua, Quan}, title = {Modelling the C-14 bomb-pulse in young speleothems using a soil carbon continuum model}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {261}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2019.04.029}, pages = {342 -- 367}, year = {2019}, abstract = {The 'bomb-pulse' method is a chronological approach to further constrain the age of speleothems that grew between 1950 CE - present. Establishing dependable chronological constraints is crucial for modern calibration studies of speleothems to instrumental climate records, which provides the basis for paleoclimate interpretations. However, a large unknown is how 14C is transferred from the atmosphere to any individual speleothem owing to the site-specific residence times of organic matter above cave systems. Here, we employ the bomb-pulse method to build chronologies from 14C measurements in combination with a new unsaturated zone C model which considers C decomposition as a continuum, to better understand unsaturated zone 14C dynamics. The bomb-pulse curves of eight speleothems from southern Australia in three contrasting climatic regions; the semi-arid Wellington Caves site, the mediterranean Golgotha Cave site and the montane Yarrangobilly Caves site, are investigated. Overall, the modelled 14C bomb-pulse curves produce excellent fits with measured 14C speleothem data (r2 = 0.82-0.99). The C modelling reveals that unsaturated zone C is predominately young at the semi-arid site, with a weighted-mean residence time of 32 years and that tree root respiration is likely an important source of vadose CO2. At the montane site, ∼39\% of C is young (<1 years), but the weighted-mean C ages are older (145-220 years). The mediterranean site has very little contribution from young C (<12\%: 0-1 years), with weighted-mean ages between 157 and 245 years, likely due to greater adsorption of organic matter in the upper vadose zone during matrix flow, and remobilisation of C from young syngenetic karst. New end members for low speleothem Dead Carbon Proportion (DCP) are identified (2.19\% and 1.65\%, respectively) for Australian montane and semi-arid zone speleothems, where oversupply of modern CO2 in the vadose zone leads to lower DCP. It is also demonstrated that DCP can be quite variable over small time scales, that processes may be difficult to untangle and a constant DCP assumption is likely invalid. DCP variability over time is mainly controlled by the changes vadose zone CO2, where vegetation regeneration, wild-fires and karst hydrology play an important role.}, language = {en} } @article{AichnerMakhmudovRajabovetal.2019, author = {Aichner, Bernhard and Makhmudov, Zafar and Rajabov, Iljomjon and Zhang, Qiong and Pausata, Francesco Salvatore R. and Werner, Martin and Heinecke, Liv and Kuessner, Marie L. and Feakins, Sarah J. and Sachse, Dirk and Mischke, Steffen}, title = {Hydroclimate in the Pamirs Was Driven by Changes in Precipitation-Evaporation Seasonality Since theLast Glacial Period}, series = {Geophysical research letters}, volume = {46}, journal = {Geophysical research letters}, number = {23}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL085202}, pages = {13972 -- 13983}, year = {2019}, abstract = {The Central Asian Pamir Mountains (Pamirs) are a high-altitude region sensitive to climatic change, with only few paleoclimatic records available. To examine the glacial-interglacial hydrological changes in the region, we analyzed the geochemical parameters of a 31-kyr record from Lake Karakul and performed a set of experiments with climate models to interpret the results. delta D values of terrestrial biomarkers showed insolation-driven trends reflecting major shifts of water vapor sources. For aquatic biomarkers, positive delta D shifts driven by changes in precipitation seasonality were observed at ca. 31-30, 28-26, and 17-14 kyr BP. Multiproxy paleoecological data and modelling results suggest that increased water availability, induced by decreased summer evaporation, triggered higher lake levels during those episodes, possibly synchronous to northern hemispheric rapid climate events. We conclude that seasonal changes in precipitation-evaporation balance significantly influenced the hydrological state of a large waterbody such as Lake Karakul, while annual precipitation amount and inflows remained fairly constant.}, language = {en} } @article{BecherGrimmThorbeketal.2014, author = {Becher, Matthias A. and Grimm, Volker and Thorbek, Pernille and Horn, Juliane and Kennedy, Peter J. and Osborne, Juliet L.}, title = {BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {51}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/1365-2664.12222}, pages = {470 -- 482}, year = {2014}, abstract = {BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee colony dynamics.}, language = {en} }