@article{VinnikSilveiraKiselevetal.2012, author = {Vinnik, Lev and Silveira, Graca and Kiselev, Sergei and Farra, Veronique and Weber, Michael H. and Stutzmann, Eleonore}, title = {Cape verde hotspot from the upper crust to the top of the lower mantle}, series = {Earth \& planetary science letters}, volume = {319}, journal = {Earth \& planetary science letters}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2011.12.017}, pages = {259 -- 268}, year = {2012}, abstract = {We investigate the crust, upper mantle and mantle transition zone of the Cape Verde hotspot by using seismic P and S receiver functions from several tens of local seismograph stations. We find a strong discontinuity at a depth of similar to 10 km underlain by a similar to 15-km thick layer with a high (similar to 1.9) Vp/Vs velocity ratio. We interpret this discontinuity and the underlying layer as the fossil Moho, inherited from the pre-hotspot era, and the plume-related magmatic underplate. Our uppermost-mantle models are very different from those previously obtained for this region: our S velocity is much lower and there are no indications of low densities. Contrary to previously published arguments for the standard transition zone thickness our data indicate that this thickness under the Cape Verde islands is up to similar to 30 km less than in the ambient mantle. This reduction is a combined effect of a depression of the 410-km discontinuity and an uplift of the 660-km discontinuity. The uplift is in contrast to laboratory data and some seismic data on a negligible dependence of depth of the 660-km discontinuity on temperature in hotspots. A large negative pressure-temperature slope which is suggested by our data implies that the 660-km discontinuity may resist passage of the plume. Our data reveal beneath the islands a reduction of S velocity of a few percent between 470-km and 510-km depths. The low velocity layer in the upper transition zone under the Cape Verde archipelago is very similar to that previously found under the Azores and a few other hotspots. In the literature there are reports on a regional 520-km discontinuity, the impedance of which is too large to be explained by the known phase transitions. Our observations suggest that the 520-km discontinuity may present the base of the low-velocity layer in the transition zone.}, language = {en} } @article{KnapmeyerEndrunKruegerLegendreetal.2013, author = {Knapmeyer-Endrun, Brigitte and Kr{\"u}ger, Frank and Legendre, C. P. and Geissler, Wolfram H.}, title = {Tracing the influence of the trans-european suture zone into the mantle transition zone}, series = {Earth \& planetary science letters}, volume = {363}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, organization = {PASSEQ Working Grp}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.12.028}, pages = {73 -- 87}, year = {2013}, abstract = {Cratons with their thick lithospheric roots can influence the thermal structure, and thus the convective flow, in the surrounding mantle. As mantle temperatures are hard to measure directly, depth variations in the mantle transition zone (MTZ) discontinuities are often employed as a proxy. Here, we use a large new data set of P-receiver functions to map the 410 km and 660 km discontinuities beneath the western edge of the East European Craton and adjacent Phanerozoic Europe across the most fundamental lithospheric boundary in Europe, the Trans-European Suture Zone (TESZ). We observe significantly shorter travel times for conversions from both MTZ discontinuities within the craton, caused by the high velocities of the cratonic root. By contrast, the differential travel time across the MTZ is normal to only slightly raised. This implies that any insulating effect of the cratonic keel does not reach the MTZ. In contrast to earlier observations in Siberia, we do not find any trace of a discontinuity at 520 km depth, which indicates a rather dry MTZ beneath the western edge of the craton. Within most of covered Phanerozoic Europe, the MTZ differential travel time is remarkably uniform and in agreement with standard Earth models. No widespread thermal effects of the various episodes of Caledonian and Variscan subduction that took place during the amalgamation of the continent remain. Only more recent tectonic events, related to Alpine subduction and Quarternary volcanism in the Eifel area, can be traced. While the East European craton shows no distinct imprint into the MTZ, we discover the signature of the TESZ in the MTZ in the form of a linear region of about 350 km width with a 1.5 s increase in differential travel time, which could either be caused by high water content or decreased temperature. Taking into account results of recent S-wave tomographies, raised water content in the MTZ cannot be the main cause for this observation. Accordingly, we explain the increase, equivalent to a 15 km thicker MTZ, by a temperature decrease of about 80 K. We discuss two alternative models for this temperature reduction, either a remnant of subduction or an indication of downwelling due to small-scale, edge-driven convection caused by the contrast in lithospheric thickness across the TESZ. Any subducted lithosphere found in the MTZ at this location is unlikely to be related to Variscan subduction along the TESZ, though, as Eurasia has moved significantly northward since the Variscan orogeny.}, language = {en} }