@article{SemmoTrappJobstetal.2015, author = {Semmo, Amir and Trapp, Matthias and Jobst, Markus and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {Cartography-Oriented Design of 3D Geospatial Information Visualization - Overview and Techniques}, series = {The cartographic journal}, volume = {52}, journal = {The cartographic journal}, number = {2}, publisher = {Routledge, Taylor \& Francis Group}, address = {Leeds}, issn = {0008-7041}, doi = {10.1080/00087041.2015.1119462}, pages = {95 -- 106}, year = {2015}, abstract = {In economy, society and personal life map-based interactive geospatial visualization becomes a natural element of a growing number of applications and systems. The visualization of 3D geospatial information, however, raises the question how to represent the information in an effective way. Considerable research has been done in technology-driven directions in the fields of cartography and computer graphics (e.g., design principles, visualization techniques). Here, non-photorealistic rendering (NPR) represents a promising visualization category - situated between both fields - that offers a large number of degrees for the cartography-oriented visual design of complex 2D and 3D geospatial information for a given application context. Still today, however, specifications and techniques for mapping cartographic design principles to the state-of-the-art rendering pipeline of 3D computer graphics remain to be explored. This paper revisits cartographic design principles for 3D geospatial visualization and introduces an extended 3D semiotic model that complies with the general, interactive visualization pipeline. Based on this model, we propose NPR techniques to interactively synthesize cartographic renditions of basic feature types, such as terrain, water, and buildings. In particular, it includes a novel iconification concept to seamlessly interpolate between photorealistic and cartographic representations of 3D landmarks. Our work concludes with a discussion of open challenges in this field of research, including topics, such as user interaction and evaluation.}, language = {en} } @article{PasewaldtSemmoTrappetal.2014, author = {Pasewaldt, Sebastian and Semmo, Amir and Trapp, Matthias and D{\"o}llner, J{\"u}rgen}, title = {Multi-perspective 3D panoramas}, series = {International journal of geographical information science}, volume = {28}, journal = {International journal of geographical information science}, number = {10}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1365-8816}, doi = {10.1080/13658816.2014.922686}, pages = {2030 -- 2051}, year = {2014}, abstract = {This article presents multi-perspective 3D panoramas that focus on visualizing 3D geovirtual environments (3D GeoVEs) for navigation and exploration tasks. Their key element, a multi-perspective view (MPV), seamlessly combines what is seen from multiple viewpoints into a single image. This approach facilitates the presentation of information for virtual 3D city and landscape models, particularly by reducing occlusions, increasing screen-space utilization, and providing additional context within a single image. We complement MPVs with cartographic visualization techniques to stylize features according to their semantics and highlight important or prioritized information. When combined, both techniques constitute the core implementation of interactive, multi-perspective 3D panoramas. They offer a large number of effective means for visual communication of 3D spatial information, a high degree of customization with respect to cartographic design, and manifold applications in different domains. We discuss design decisions of 3D panoramas for the exploration of and navigation in 3D GeoVEs. We also discuss a preliminary user study that indicates that 3D panoramas are a promising approach for navigation systems using 3D GeoVEs.}, language = {en} }